論文の概要: Graph Transformers without Positional Encodings
- arxiv url: http://arxiv.org/abs/2401.17791v3
- Date: Mon, 6 May 2024 13:12:05 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-07 23:45:49.753897
- Title: Graph Transformers without Positional Encodings
- Title(参考訳): 位置符号化のないグラフ変換器
- Authors: Ayush Garg,
- Abstract要約: グラフのラプラシアンスペクトルを認識する新しいスペクトル対応アテンション機構を用いたグラフ変換器であるEigenformerを紹介する。
我々は,多数の標準GNNベンチマークにおいて,SOTAグラフ変換器の性能向上を実証的に示す。
- 参考スコア(独自算出の注目度): 0.7252027234425334
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, Transformers for graph representation learning have become increasingly popular, achieving state-of-the-art performance on a wide-variety of graph datasets, either alone or in combination with message-passing graph neural networks (MP-GNNs). Infusing graph inductive-biases in the innately structure-agnostic transformer architecture in the form of structural or positional encodings (PEs) is key to achieving these impressive results. However, designing such encodings is tricky and disparate attempts have been made to engineer such encodings including Laplacian eigenvectors, relative random-walk probabilities (RRWP), spatial encodings, centrality encodings, edge encodings etc. In this work, we argue that such encodings may not be required at all, provided the attention mechanism itself incorporates information about the graph structure. We introduce Eigenformer, a Graph Transformer employing a novel spectrum-aware attention mechanism cognizant of the Laplacian spectrum of the graph, and empirically show that it achieves performance competetive with SOTA Graph Transformers on a number of standard GNN benchmarks. Additionally, we theoretically prove that Eigenformer can express various graph structural connectivity matrices, which is particularly essential when learning over smaller graphs.
- Abstract(参考訳): 近年,グラフ表現学習用トランスフォーマーが普及し,メッセージパッシンググラフニューラルネットワーク(MP-GNN)と組み合わせて,多種多様なグラフデータセット上で最先端のパフォーマンスを実現している。
構造的あるいは位置的エンコーディング(PE)の形で、自然に構造に依存しないトランスフォーマーアーキテクチャにグラフインダクティブビアーゼを注入することが、これらの印象的な結果を達成する鍵となる。
しかし、そのようなエンコーディングの設計は難易度が高く、ラプラシア固有ベクトル、相対ランダムウォーク確率(RRWP)、空間エンコーディング、集中エンコーディング、エッジエンコーディングなど、様々な試みがなされている。
この研究において、注意機構自体がグラフ構造に関する情報を包含している場合、そのような符号化は必要とされないかもしれないと論じる。
グラフのラプラシアンスペクトルを認識する新しいスペクトル対応アテンション機構を採用したグラフ変換器であるEigenformerを導入し、多数の標準GNNベンチマークでSOTAグラフ変換器と競合する性能を実証的に示す。
さらに、Eigenformerがグラフ構造接続行列を表現できることを理論的に証明する。
関連論文リスト
- What Improves the Generalization of Graph Transformers? A Theoretical Dive into the Self-attention and Positional Encoding [67.59552859593985]
自己アテンションと位置エンコーディングを組み込んだグラフトランスフォーマーは、さまざまなグラフ学習タスクのための強力なアーキテクチャとして登場した。
本稿では,半教師付き分類のための浅いグラフ変換器の理論的検討について紹介する。
論文 参考訳(メタデータ) (2024-06-04T05:30:16Z) - Automatic Graph Topology-Aware Transformer [50.2807041149784]
マイクロレベルおよびマクロレベルの設計による包括的グラフトランスフォーマー検索空間を構築した。
EGTASはマクロレベルでのグラフトランスフォーマートポロジとマイクロレベルでのグラフ認識戦略を進化させる。
グラフレベルおよびノードレベルのタスクに対して,EGTASの有効性を示す。
論文 参考訳(メタデータ) (2024-05-30T07:44:31Z) - SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations [75.71298846760303]
ノード特性予測ベンチマークにおいて,一層注意が驚くほど高い性能を示すことを示す。
提案手法をSGFormer (Simplified Graph Transformer) と呼ぶ。
提案手法は,大きなグラフ上にトランスフォーマーを構築する上で,独立性のある新たな技術パスを啓蒙するものである。
論文 参考訳(メタデータ) (2023-06-19T08:03:25Z) - Are More Layers Beneficial to Graph Transformers? [97.05661983225603]
現在のグラフ変換器は、深さの増大によるパフォーマンス向上のボトルネックに悩まされている。
ディープグラフ変換器は、グローバルな注目の消滅能力によって制限されている。
本稿では,符号化表現に部分構造トークンを明示的に用いたDeepGraphという新しいグラフトランスフォーマーモデルを提案する。
論文 参考訳(メタデータ) (2023-03-01T15:22:40Z) - Transformers over Directed Acyclic Graphs [6.263470141349622]
有向非巡回グラフ(DAG)上の変換器について検討し,DAGに適したアーキテクチャ適応を提案する。
グラフトランスフォーマーは、DAGに適したグラフニューラルネットワークを概ね上回り、品質と効率の両面でSOTAグラフトランスフォーマーの性能を向上させるのに有効であることを示す。
論文 参考訳(メタデータ) (2022-10-24T12:04:52Z) - Structure-Aware Transformer for Graph Representation Learning [7.4124458942877105]
本研究では,トランスフォーマーによって生成されるノード表現と位置符号化が必ずしも類似点を捉えるとは限らないことを示す。
本稿では,新しい自己認識機構上に構築された,単純で柔軟なグラフ変換器のクラスであるStructure-Aware Transformerを提案する。
我々のフレームワークは,既存のGNNを利用してサブグラフ表現を抽出し,ベースとなるGNNモデルに対する性能を体系的に向上することを示す。
論文 参考訳(メタデータ) (2022-02-07T09:53:39Z) - Spectral Graph Convolutional Networks With Lifting-based Adaptive Graph
Wavelets [81.63035727821145]
スペクトルグラフ畳み込みネットワーク(SGCN)はグラフ表現学習において注目を集めている。
本稿では,適応グラフウェーブレットを用いたグラフ畳み込みを実装した新しいスペクトルグラフ畳み込みネットワークを提案する。
論文 参考訳(メタデータ) (2021-08-03T17:57:53Z) - GraphiT: Encoding Graph Structure in Transformers [37.33808493548781]
古典的グラフニューラルネットワーク(GNN)を用いて学習した表現を,ノードの特徴と構造的および位置的情報の集合として見ることにより,より優れた表現を実現できることを示す。
我々のモデルであるGraphiTは,グラフ上の正定値カーネルに基づく自己注意スコアにおける相対的な位置符号化戦略と,短距離パスなどの局所的なサブ構造を列挙して符号化することで,そのような情報を符号化する。
論文 参考訳(メタデータ) (2021-06-10T11:36:22Z) - Do Transformers Really Perform Bad for Graph Representation? [62.68420868623308]
標準の Transformer アーキテクチャをベースに構築された Graphormer について述べる。
グラフでTransformerを利用する上で重要な洞察は、グラフの構造情報をモデルに効果的にエンコードする必要があることである。
論文 参考訳(メタデータ) (2021-06-09T17:18:52Z) - Rethinking Graph Transformers with Spectral Attention [13.068288784805901]
我々は、学習された位置符号化(LPE)を用いて、与えられたグラフ内の各ノードの位置を学習するtextitSpectral Attention Network$(SAN)を提示する。
ラプラシアンの完全なスペクトルを利用することで、我々のモデルは理論上グラフの区別に強力であり、類似のサブ構造を共鳴からよりよく検出することができる。
我々のモデルは最先端のGNNよりも同等かそれ以上の性能を発揮し、あらゆる注目ベースモデルよりも広いマージンで性能を向上する。
論文 参考訳(メタデータ) (2021-06-07T18:11:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。