論文の概要: GraphiT: Encoding Graph Structure in Transformers
- arxiv url: http://arxiv.org/abs/2106.05667v1
- Date: Thu, 10 Jun 2021 11:36:22 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-12 13:26:00.133725
- Title: GraphiT: Encoding Graph Structure in Transformers
- Title(参考訳): GraphiT: トランスフォーマーのグラフ構造をエンコードする
- Authors: Gr\'egoire Mialon, Dexiong Chen, Margot Selosse, Julien Mairal
- Abstract要約: 古典的グラフニューラルネットワーク(GNN)を用いて学習した表現を,ノードの特徴と構造的および位置的情報の集合として見ることにより,より優れた表現を実現できることを示す。
我々のモデルであるGraphiTは,グラフ上の正定値カーネルに基づく自己注意スコアにおける相対的な位置符号化戦略と,短距離パスなどの局所的なサブ構造を列挙して符号化することで,そのような情報を符号化する。
- 参考スコア(独自算出の注目度): 37.33808493548781
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We show that viewing graphs as sets of node features and incorporating
structural and positional information into a transformer architecture is able
to outperform representations learned with classical graph neural networks
(GNNs). Our model, GraphiT, encodes such information by (i) leveraging relative
positional encoding strategies in self-attention scores based on positive
definite kernels on graphs, and (ii) enumerating and encoding local
sub-structures such as paths of short length. We thoroughly evaluate these two
ideas on many classification and regression tasks, demonstrating the
effectiveness of each of them independently, as well as their combination. In
addition to performing well on standard benchmarks, our model also admits
natural visualization mechanisms for interpreting graph motifs explaining the
predictions, making it a potentially strong candidate for scientific
applications where interpretation is important. Code available at
https://github.com/inria-thoth/GraphiT.
- Abstract(参考訳): 従来のグラフニューラルネットワーク(GNN)で学習した表現よりも、グラフをノードの特徴の集合として見ることができ、構造的および位置的情報をトランスフォーマーアーキテクチャに組み込むことが可能であることを示す。
我々のモデルであるGraphiTは,グラフ上の正定値カーネルに基づく自己注意スコアにおける相対的な位置符号化戦略と,短距離パスなどの局所的なサブ構造を列挙して符号化することで,そのような情報を符号化する。
我々はこれらの2つの概念を多くの分類タスクと回帰タスクで徹底的に評価し、それぞれの有効性と組み合わせの有効性を独立に示す。
標準ベンチマークでよく機能するだけでなく,予測を説明するグラフモチーフを解釈するための自然な可視化機構も認めており,解釈が重要である科学的応用の候補として潜在的に有力である。
コードはhttps://github.com/inria-thoth/graphit。
関連論文リスト
- What Improves the Generalization of Graph Transformers? A Theoretical Dive into the Self-attention and Positional Encoding [67.59552859593985]
自己アテンションと位置エンコーディングを組み込んだグラフトランスフォーマーは、さまざまなグラフ学習タスクのための強力なアーキテクチャとして登場した。
本稿では,半教師付き分類のための浅いグラフ変換器の理論的検討について紹介する。
論文 参考訳(メタデータ) (2024-06-04T05:30:16Z) - Graph Transformers without Positional Encodings [0.7252027234425334]
グラフのラプラシアンスペクトルを認識する新しいスペクトル対応アテンション機構を用いたグラフ変換器であるEigenformerを紹介する。
我々は,多数の標準GNNベンチマークにおいて,SOTAグラフ変換器の性能向上を実証的に示す。
論文 参考訳(メタデータ) (2024-01-31T12:33:31Z) - UniG-Encoder: A Universal Feature Encoder for Graph and Hypergraph Node
Classification [6.977634174845066]
グラフおよびハイパーグラフ表現学習のための普遍的特徴エンコーダ(UniG-Encoder)が設計されている。
アーキテクチャは、連結ノードのトポロジ的関係をエッジやハイパーエッジに前方変換することから始まる。
符号化されたノードの埋め込みは、投影行列の変換によって記述された逆変換から導かれる。
論文 参考訳(メタデータ) (2023-08-03T09:32:50Z) - GraphGLOW: Universal and Generalizable Structure Learning for Graph
Neural Networks [72.01829954658889]
本稿では,この新たな問題設定の数学的定義を紹介する。
一つのグラフ共有構造学習者と複数のグラフ固有GNNを協調する一般的なフレームワークを考案する。
十分に訓練された構造学習者は、微調整なしで、目に見えない対象グラフの適応的な構造を直接生成することができる。
論文 参考訳(メタデータ) (2023-06-20T03:33:22Z) - Structure-Aware Transformer for Graph Representation Learning [7.4124458942877105]
本研究では,トランスフォーマーによって生成されるノード表現と位置符号化が必ずしも類似点を捉えるとは限らないことを示す。
本稿では,新しい自己認識機構上に構築された,単純で柔軟なグラフ変換器のクラスであるStructure-Aware Transformerを提案する。
我々のフレームワークは,既存のGNNを利用してサブグラフ表現を抽出し,ベースとなるGNNモデルに対する性能を体系的に向上することを示す。
論文 参考訳(メタデータ) (2022-02-07T09:53:39Z) - Graph Kernel Neural Networks [53.91024360329517]
本稿では、グラフ上の内部積を計算するカーネル関数であるグラフカーネルを用いて、標準畳み込み演算子をグラフ領域に拡張することを提案する。
これにより、入力グラフの埋め込みを計算する必要のない完全に構造的なモデルを定義することができる。
私たちのアーキテクチャでは,任意の種類のグラフカーネルをプラグインすることが可能です。
論文 参考訳(メタデータ) (2021-12-14T14:48:08Z) - Graph Neural Networks with Learnable Structural and Positional
Representations [83.24058411666483]
任意のグラフの大きな問題は、ノードの標準位置情報の欠如である。
ノードの位置ノード(PE)を導入し、Transformerのように入力層に注入する。
両方のGNNクラスで学習可能なPEを考えると、分子データセットのパフォーマンスは2.87%から64.14%に向上する。
論文 参考訳(メタデータ) (2021-10-15T05:59:15Z) - Graph Attention Networks with Positional Embeddings [7.552100672006174]
グラフニューラルネットワーク(GNN)は、ノード分類タスクにおける芸術的パフォーマンスの現在の状態を提供するディープラーニング手法である。
本論文では,GATを位置埋め込みで強化するフレームワークであるG Graph Attentional Networks with Positional Embeddings(GAT-POS)を提案する。
GAT-POSは、強いGNNベースラインや、非ホモフィルグラフ上の最近の構造埋め込み強化GNNと比較して著しく改善されている。
論文 参考訳(メタデータ) (2021-05-09T22:13:46Z) - Building powerful and equivariant graph neural networks with structural
message-passing [74.93169425144755]
本稿では,2つのアイデアに基づいた,強力かつ同変なメッセージパッシングフレームワークを提案する。
まず、各ノードの周囲の局所的コンテキスト行列を学習するために、特徴に加えてノードの1ホット符号化を伝搬する。
次に,メッセージのパラメトリゼーション手法を提案する。
論文 参考訳(メタデータ) (2020-06-26T17:15:16Z) - Graph-Aware Transformer: Is Attention All Graphs Need? [5.240000443825077]
GRaph-Aware Transformer (GRAT)はTransformerベースの最初のモデルであり、グラフ全体をエンドツーエンドでエンコードしデコードすることができる。
GRATはQM9ベンチマークで4つの回帰タスクに対する最先端のパフォーマンスを含む非常に有望な結果を示している。
論文 参考訳(メタデータ) (2020-06-09T12:13:56Z) - Graphs, Convolutions, and Neural Networks: From Graph Filters to Graph
Neural Networks [183.97265247061847]
我々はグラフ信号処理を活用してグラフニューラルネットワーク(GNN)の表現空間を特徴付ける。
GNNにおけるグラフ畳み込みフィルタの役割について議論し、そのようなフィルタで構築されたアーキテクチャは、置換同値の基本的な性質と位相変化に対する安定性を持つことを示す。
また,ロボット群に対するリコメンデータシステムや分散型コントローラの学習におけるGNNの利用について検討した。
論文 参考訳(メタデータ) (2020-03-08T13:02:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。