論文の概要: Hybrid quantum cycle generative adversarial network for small molecule
generation
- arxiv url: http://arxiv.org/abs/2402.00014v1
- Date: Thu, 28 Dec 2023 14:10:26 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-04 05:20:34.232649
- Title: Hybrid quantum cycle generative adversarial network for small molecule
generation
- Title(参考訳): 小分子生成のためのハイブリッド量子サイクル生成対向ネットワーク
- Authors: Matvei Anoshin, Asel Sagingalieva, Christopher Mansell, Vishal Shete,
Markus Pflitsch, and Alexey Melnikov
- Abstract要約: 本研究は、パラメタライズド量子回路の既知の分子生成逆数ネットワークへの工学的統合に基づく、いくつかの新しい生成逆数ネットワークモデルを導入する。
導入された機械学習モデルには、強化学習原理に基づく新しいマルチパラメータ報酬関数が組み込まれている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The contemporary drug design process demands considerable time and resources
to develop each new compound entering the market. Generating small molecules is
a pivotal aspect of drug discovery, essential for developing innovative
pharmaceuticals. Uniqueness, validity, diversity, druglikeliness,
synthesizability, and solubility molecular pharmacokinetic properties, however,
are yet to be maximized. This work introduces several new generative
adversarial network models based on engineering integration of parametrized
quantum circuits into known molecular generative adversarial networks. The
introduced machine learning models incorporate a new multi-parameter reward
function grounded in reinforcement learning principles. Through extensive
experimentation on benchmark drug design datasets, QM9 and PC9, the introduced
models are shown to outperform scores achieved previously. Most prominently,
the new scores indicate an increase of up to 30% in the druglikeness
quantitative estimation. The new hybrid quantum machine learning algorithms, as
well as the achieved scores of pharmacokinetic properties, contribute to the
development of fast and accurate drug discovery processes.
- Abstract(参考訳): 現代の医薬品設計プロセスは、市場に参入する各化合物を開発するのにかなりの時間と資源を必要とする。
小分子の生成は医薬品発見の重要な側面であり、革新的な医薬品の開発に不可欠である。
しかし, 特異性, 妥当性, 多様性, 薬物類似性, 合成性, 溶解性分子薬物動態性は未だ最大化されていない。
本研究は、パラメタライズド量子回路の既知の分子生成逆数ネットワークへの工学的統合に基づく、新しい生成逆数ネットワークモデルを導入する。
導入された機械学習モデルには、強化学習原則に基づく新しいマルチパラメータ報酬関数が組み込まれている。
ベンチマークドラッグデザインデータセットであるQM9とPC9の広範な実験により、導入したモデルが以前に達成されたスコアよりも優れていることを示す。
最も顕著に、新しいスコアは、薬様度定量的推定の最大30%の増加を示している。
新しいハイブリッド量子機械学習アルゴリズムは、薬物動態特性の達成されたスコアと同様に、迅速かつ正確な薬物発見プロセスの開発に寄与する。
関連論文リスト
- Discovering intrinsic multi-compartment pharmacometric models using Physics Informed Neural Networks [0.0]
我々は、純粋にデータ駆動型ニューラルネットワークモデルであるPKINNを紹介する。
PKINNは、本質的なマルチコンパートメントベースの薬理学構造を効率的に発見し、モデル化する。
得られたモデルは、シンボリック回帰法によって解釈可能であり、説明可能である。
論文 参考訳(メタデータ) (2024-04-30T19:31:31Z) - Quantum Computing-Enhanced Algorithm Unveils Novel Inhibitors for KRAS [10.732020360180773]
我々は16量子ビットのIBM量子コンピュータでトレーニングされた量子アルゴリズムのパワーをシームレスに統合する量子古典的生成モデルを導入する。
我々の研究は、実験で確認された生物学的ヒットを生み出すために量子生成モデルを使用した初めてのものである。
論文 参考訳(メタデータ) (2024-02-13T04:19:06Z) - Implicit Geometry and Interaction Embeddings Improve Few-Shot Molecular
Property Prediction [53.06671763877109]
我々は, 複雑な分子特性を符号化した分子埋め込みを開発し, 数発の分子特性予測の性能を向上させる。
我々の手法は大量の合成データ、すなわち分子ドッキング計算の結果を利用する。
複数の分子特性予測ベンチマークでは、埋め込み空間からのトレーニングにより、マルチタスク、MAML、プロトタイプラーニング性能が大幅に向上する。
論文 参考訳(メタデータ) (2023-02-04T01:32:40Z) - Drug Synergistic Combinations Predictions via Large-Scale Pre-Training
and Graph Structure Learning [82.93806087715507]
薬物併用療法は、より有効で安全性の低い疾患治療のための確立された戦略である。
ディープラーニングモデルは、シナジスティックな組み合わせを発見する効率的な方法として登場した。
我々のフレームワークは、他のディープラーニングベースの手法と比較して最先端の結果を達成する。
論文 参考訳(メタデータ) (2023-01-14T15:07:43Z) - Exploring the Advantages of Quantum Generative Adversarial Networks in
Generative Chemistry [8.98977891798507]
我々は小分子発見のためのハイブリッド量子古典生成逆数ネットワーク(GAN)を提案した。
我々は,GANの各素子を可変量子回路(VQC)で置換し,小型薬物発見における量子的優位性を実証した。
論文 参考訳(メタデータ) (2022-10-30T11:57:56Z) - Retrieval-based Controllable Molecule Generation [63.44583084888342]
制御可能な分子生成のための検索に基づく新しいフレームワークを提案する。
我々は、与えられた設計基準を満たす分子の合成に向けて、事前学習された生成モデルを操るために、分子の小さなセットを使用します。
提案手法は生成モデルの選択に非依存であり,タスク固有の微調整は不要である。
論文 参考訳(メタデータ) (2022-08-23T17:01:16Z) - Exploring Chemical Space with Score-based Out-of-distribution Generation [57.15855198512551]
生成微分方程式(SDE)にアウト・オブ・ディストリビューション制御を組み込んだスコアベース拡散方式を提案する。
いくつかの新しい分子は現実世界の薬物の基本的な要件を満たしていないため、MOODは特性予測器からの勾配を利用して条件付き生成を行う。
我々はMOODがトレーニング分布を超えて化学空間を探索できることを実験的に検証し、既存の方法で見いだされた分子、そして元のトレーニングプールの上位0.01%までも生成できることを実証した。
論文 参考訳(メタデータ) (2022-06-06T06:17:11Z) - Drug Discovery Approaches using Quantum Machine Learning [10.321495133438242]
深層生成モデルと予測モデルは、薬物開発を支援するために広く採用されている。
そこで本研究では,小分子の生成,タンパク質の結合ポケットの分類,大分子の生成を行う量子機械学習手法を提案する。
論文 参考訳(メタデータ) (2021-04-01T19:53:06Z) - MIMOSA: Multi-constraint Molecule Sampling for Molecule Optimization [51.00815310242277]
生成モデルと強化学習アプローチは、最初の成功をおさめたが、複数の薬物特性を同時に最適化する上で、依然として困難に直面している。
本稿では,MultI-Constraint MOlecule SAmpling (MIMOSA)アプローチ,初期推定として入力分子を用いるサンプリングフレームワーク,ターゲット分布からのサンプル分子を提案する。
論文 参考訳(メタデータ) (2020-10-05T20:18:42Z) - Generative chemistry: drug discovery with deep learning generative
models [0.0]
本稿では, 創薬プロセスの迅速化に向け, 創薬モデルによる生成化学の最近の進歩を概観する。
ニューラルネットワーク,変分オートエンコーダ,逆数オートエンコーダ,複合生成のための生成逆数ネットワークなど,最先端の生成アーキテクチャの利用に関する詳細な議論が注目されている。
論文 参考訳(メタデータ) (2020-08-20T14:38:21Z) - Learning To Navigate The Synthetically Accessible Chemical Space Using
Reinforcement Learning [75.95376096628135]
ド・ノボ薬物設計のための強化学習(RL)を利用した新しい前方合成フレームワークを提案する。
このセットアップでは、エージェントは巨大な合成可能な化学空間をナビゲートする。
本研究は,合成可能な化学空間を根本的に拡張する上で,エンド・ツー・エンド・トレーニングが重要なパラダイムであることを示す。
論文 参考訳(メタデータ) (2020-04-26T21:40:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。