論文の概要: Drug Discovery Approaches using Quantum Machine Learning
- arxiv url: http://arxiv.org/abs/2104.00746v1
- Date: Thu, 1 Apr 2021 19:53:06 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-06 02:16:37.718112
- Title: Drug Discovery Approaches using Quantum Machine Learning
- Title(参考訳): 量子機械学習を用いた薬物発見手法
- Authors: Junde Li, Mahabubul Alam, Congzhou M Sha, Jian Wang, Nikolay V.
Dokholyan, Swaroop Ghosh
- Abstract要約: 深層生成モデルと予測モデルは、薬物開発を支援するために広く採用されている。
そこで本研究では,小分子の生成,タンパク質の結合ポケットの分類,大分子の生成を行う量子機械学習手法を提案する。
- 参考スコア(独自算出の注目度): 10.321495133438242
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Traditional drug discovery pipeline takes several years and cost billions of
dollars. Deep generative and predictive models are widely adopted to assist in
drug development. Classical machines cannot efficiently produce atypical
patterns of quantum computers which might improve the training quality of
learning tasks. We propose a suite of quantum machine learning techniques e.g.,
generative adversarial network (GAN), convolutional neural network (CNN) and
variational auto-encoder (VAE) to generate small drug molecules, classify
binding pockets in proteins, and generate large drug molecules, respectively.
- Abstract(参考訳): 伝統的な薬物発見パイプラインは数年かかり、何十億ドルもの費用がかかる。
深い生成モデルと予測モデルは、薬物開発を支援するために広く採用されている。
古典的マシンは、学習タスクのトレーニング品質を改善する量子コンピュータの非定型パターンを効率的に生成できない。
本稿では,gan(generative adversarial network)やcnn(convolutional neural network),vae(varuational auto-encoder)といった量子機械学習技術のスイートを提案する。
関連論文リスト
- Large-scale quantum reservoir learning with an analog quantum computer [45.21335836399935]
我々は中性原子アナログ量子コンピュータの量子力学を利用してデータを処理する量子貯水池学習アルゴリズムを開発した。
アルゴリズムを実験的に実装し、機械学習タスクの様々なカテゴリで競合性能を達成する。
本研究は,従来の量子相関を有効機械学習に活用する可能性を示すものである。
論文 参考訳(メタデータ) (2024-07-02T18:00:00Z) - Quantum Information Processing with Molecular Nanomagnets: an introduction [49.89725935672549]
本稿では,量子情報処理の導入について紹介する。
量子アルゴリズムを理解し設計するための基本的なツールを紹介し、分子スピンアーキテクチャ上での実際の実現を常に言及する。
分子スピンキュートハードウェア上で提案および実装された量子アルゴリズムの例を示す。
論文 参考訳(メタデータ) (2024-05-31T16:43:20Z) - Hybrid quantum cycle generative adversarial network for small molecule
generation [0.0]
本研究は、パラメタライズド量子回路の既知の分子生成逆数ネットワークへの工学的統合に基づく、いくつかの新しい生成逆数ネットワークモデルを導入する。
導入された機械学習モデルには、強化学習原理に基づく新しいマルチパラメータ報酬関数が組み込まれている。
論文 参考訳(メタデータ) (2023-12-28T14:10:26Z) - Hybrid quantum-classical convolutional neural networks to improve
molecular protein binding affinity predictions [0.0]
本稿では,古典的ネットワークの複雑性を20%削減できるハイブリッド量子古典畳み込みニューラルネットワークを提案する。
その結果、トレーニングプロセスにおいて最大40%の大幅な時間節約が達成され、薬物発見プロセスの有意義なスピードアップが実現した。
論文 参考訳(メタデータ) (2023-01-16T09:53:26Z) - Exploring the Advantages of Quantum Generative Adversarial Networks in
Generative Chemistry [8.98977891798507]
我々は小分子発見のためのハイブリッド量子古典生成逆数ネットワーク(GAN)を提案した。
我々は,GANの各素子を可変量子回路(VQC)で置換し,小型薬物発見における量子的優位性を実証した。
論文 参考訳(メタデータ) (2022-10-30T11:57:56Z) - Recent Advances for Quantum Neural Networks in Generative Learning [98.88205308106778]
量子生成学習モデル(QGLM)は、古典的な学習モデルを上回る可能性がある。
機械学習の観点からQGLMの現状を概観する。
従来の機械学習タスクと量子物理学の両方におけるQGLMの潜在的な応用について論じる。
論文 参考訳(メタデータ) (2022-06-07T07:32:57Z) - Scalable Variational Quantum Circuits for Autoencoder-based Drug
Discovery [8.871042314510788]
変分オートエンコーダは、既存の分子データセットに基づいて化学空間を探索するコンピュータ支援設計手法の1つである。
本稿では,創薬分子を同時に再構成・サンプリングするためのスケーラブルな量子生成オートエンコーダ(SQ-VAE)と,それに対応するバニラ変種(SQ-AE)について述べる。
論文 参考訳(メタデータ) (2021-11-15T00:26:19Z) - Hybrid quantum-classical machine learning for generative chemistry and
drug design [0.0]
そこで我々は,Boltzmann Machine (RBM) を用いた小型離散分散変分オートエンコーダを構築した。
医薬化学および合成アクセシビリティ特性を有する新規な2331の化学構造を創出する。
結果は、既に存在するか、あるいはすぐに利用可能となる量子コンピューティングデバイスを、将来の薬物発見アプリケーションのためのテストベッドとして使用できる可能性を示している。
論文 参考訳(メタデータ) (2021-08-26T08:23:32Z) - A quantum algorithm for training wide and deep classical neural networks [72.2614468437919]
勾配勾配勾配による古典的トレーサビリティに寄与する条件は、量子線形系を効率的に解くために必要な条件と一致することを示す。
MNIST画像データセットがそのような条件を満たすことを数値的に示す。
我々は、プールを用いた畳み込みニューラルネットワークのトレーニングに$O(log n)$の実証的証拠を提供する。
論文 参考訳(メタデータ) (2021-07-19T23:41:03Z) - The Hintons in your Neural Network: a Quantum Field Theory View of Deep
Learning [84.33745072274942]
線形および非線形の層をユニタリ量子ゲートとして表現する方法を示し、量子モデルの基本的な励起を粒子として解釈する。
ニューラルネットワークの研究のための新しい視点と技術を開くことに加えて、量子定式化は光量子コンピューティングに適している。
論文 参考訳(メタデータ) (2021-03-08T17:24:29Z) - Generation of High-Resolution Handwritten Digits with an Ion-Trap
Quantum Computer [55.41644538483948]
本稿では, 量子回路に基づく生成モデルを構築し, 生成逆数ネットワークの事前分布を学習し, サンプル化する。
我々は、このハイブリッドアルゴリズムを171ドルのYb$+$ ion qubitsに基づいてイオントラップデバイスでトレーニングし、高品質な画像を生成する。
論文 参考訳(メタデータ) (2020-12-07T18:51:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。