論文の概要: Optimized Task Assignment and Predictive Maintenance for Industrial
Machines using Markov Decision Process
- arxiv url: http://arxiv.org/abs/2402.00042v2
- Date: Sat, 3 Feb 2024 14:17:07 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-07 02:16:02.753814
- Title: Optimized Task Assignment and Predictive Maintenance for Industrial
Machines using Markov Decision Process
- Title(参考訳): マルコフ決定過程を用いた産業機械の最適タスク割り当てと予測メンテナンス
- Authors: Ali Nasir, Samir Mekid, Zaid Sawlan, Omar Alsawafy
- Abstract要約: 本稿では,タスク割り当てと条件に基づく機械の健康維持のための分散意思決定手法について考察する。
マルコフ決定プロセスに基づく意思決定エージェントの設計を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper considers a distributed decision-making approach for manufacturing
task assignment and condition-based machine health maintenance. Our approach
considers information sharing between the task assignment and health management
decision-making agents. We propose the design of the decision-making agents
based on Markov decision processes. The key advantage of using a Markov
decision process-based approach is the incorporation of uncertainty involved in
the decision-making process. The paper provides detailed mathematical models
along with the associated practical execution strategy. In order to demonstrate
the effectiveness and practical applicability of our proposed approach, we have
included a detailed numerical case study that is based on open source milling
machine tool degradation data. Our case study indicates that the proposed
approach offers flexibility in terms of the selection of cost parameters and it
allows for offline computation and analysis of the decision-making policy.
These features create and opportunity for the future work on learning of the
cost parameters associated with our proposed model using artificial
intelligence.
- Abstract(参考訳): 本稿では,タスク割り当てと条件に基づく機械の健康維持のための分散意思決定手法について考察する。
本手法では,タスク割り当てと健康管理意思決定エージェント間の情報共有について検討する。
マルコフ決定過程に基づく意思決定エージェントの設計を提案する。
マルコフ決定プロセスに基づくアプローチを使う主な利点は、意思決定プロセスに不確実性が組み入れられることである。
本論文は, 実用的実行戦略とともに, 詳細な数学的モデルを提供する。
提案手法の有効性と実用性を実証するために,オープンソースミル加工機械ツール劣化データに基づく詳細な数値ケーススタディを含む。
本研究は,提案手法がコストパラメータの選択に関して柔軟性を提供し,意思決定方針のオフライン計算と分析を可能にすることを示す。
これらの特徴は、人工知能を用いた提案モデルに付随するコストパラメータの学習における将来の取り組みの創出と機会である。
関連論文リスト
- Decision-Aware Predictive Model Selection for Workforce Allocation [0.27309692684728615]
本稿では、機械学習を利用して労働者の行動を予測する新しいフレームワークを提案する。
本手法では,作業者の振舞いを表現するための最適予測モデルを,その作業員の割り当て方法によって決定する。
本稿では,予測モデル選択と作業員割り当てを統合した意思決定対応最適化フレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-10T13:59:43Z) - Automated Process Planning Based on a Semantic Capability Model and SMT [50.76251195257306]
製造システムと自律ロボットの研究において、機械で解釈可能なシステム機能の仕様に「能力」という用語が用いられる。
セマンティック能力モデルから始めて、AI計画問題を自動的に生成するアプローチを提案する。
論文 参考訳(メタデータ) (2023-12-14T10:37:34Z) - Rational Decision-Making Agent with Internalized Utility Judgment [91.80700126895927]
大規模言語モデル(LLM)は目覚ましい進歩を示し、従来のNLPアプリケーションを超えて複雑な多段階決定タスクを実行できるエージェントにLLMを開発するための重要な努力を惹きつけている。
本稿では,RadAgentを提案する。このRadAgentは,経験探索とユーティリティ学習を含む反復的なフレームワークを通じて,合理性の発展を促進する。
ToolBenchデータセットの実験結果は、RadAgentがベースラインよりも優れていることを示している。
論文 参考訳(メタデータ) (2023-08-24T03:11:45Z) - Leaving the Nest: Going Beyond Local Loss Functions for
Predict-Then-Optimize [57.22851616806617]
本手法は,文献から得られた4つの領域において,最先端の成果が得られることを示す。
提案手法は, 局所性仮定が破られた場合, 既存手法よりも200%近く性能が向上する。
論文 参考訳(メタデータ) (2023-05-26T11:17:45Z) - Quantifying and Explaining Machine Learning Uncertainty in Predictive
Process Monitoring: An Operations Research Perspective [0.0]
本稿では,情報システムと人工知能を統合した総合的多段階機械学習手法を提案する。
提案したフレームワークは、データ駆動推定の無視など、既存のソリューションの共通的な制限を十分に解決する。
本手法では,Shapley Additive Explanationsの局所的およびグローバル的変異とともに,時間間隔予測を生成するために,Quantile Regression Forestsを用いている。
論文 参考訳(メタデータ) (2023-04-13T11:18:22Z) - Explainable Data-Driven Optimization: From Context to Decision and Back
Again [76.84947521482631]
データ駆動最適化では、コンテキスト情報と機械学習アルゴリズムを使用して、不確実なパラメータによる決定問題の解決策を見つける。
本稿では,データ駆動型問題に対する解法を説明するために,対実的説明手法を提案する。
在庫管理やルーティングといった運用管理における重要な問題を説明することで,我々のアプローチを実証する。
論文 参考訳(メタデータ) (2023-01-24T15:25:16Z) - Explainable Predictive Decision Mining for Operational Support [0.3232625980782302]
決定マイニングは、プロセスの決定ポイントにおけるプロセスインスタンスのルーティングを記述/予測することを目的としています。
意思決定マイニングの既存のテクニックは、意思決定の記述に重点を置いているが、その予測には重点を置いていない。
提案手法は, SHAP値を用いた予測決定についての説明を行い, 積極的な行動の誘発を支援する。
論文 参考訳(メタデータ) (2022-10-30T09:27:41Z) - Efficient Real-world Testing of Causal Decision Making via Bayesian
Experimental Design for Contextual Optimisation [12.37745209793872]
文脈的意思決定の評価と改善のためのデータ収集のためのモデルに依存しないフレームワークを提案する。
過去の治療課題の後悔をデータ効率で評価するために,本手法を用いた。
論文 参考訳(メタデータ) (2022-07-12T01:20:11Z) - Leveraging Expert Consistency to Improve Algorithmic Decision Support [62.61153549123407]
建設のギャップを狭めるために観測結果と組み合わせることができる情報源として,歴史専門家による意思決定の利用について検討する。
本研究では,データ内の各ケースが1人の専門家によって評価された場合に,専門家の一貫性を間接的に推定する影響関数に基づく手法を提案する。
本研究は, 児童福祉領域における臨床現場でのシミュレーションと実世界データを用いて, 提案手法が構成ギャップを狭めることに成功していることを示す。
論文 参考訳(メタデータ) (2021-01-24T05:40:29Z) - Stein Variational Model Predictive Control [130.60527864489168]
不確実性の下での意思決定は、現実の自律システムにとって極めて重要である。
モデル予測制御 (MPC) 法は, 複雑な分布を扱う場合, 適用範囲が限られている。
この枠組みが、挑戦的で非最適な制御問題における計画の成功に繋がることを示す。
論文 参考訳(メタデータ) (2020-11-15T22:36:59Z) - Local Post-Hoc Explanations for Predictive Process Monitoring in
Manufacturing [0.0]
本研究では,製造におけるデータ駆動型意思決定を容易にするための,革新的な予測品質分析ソリューションを提案する。
プロセスマイニング、機械学習、説明可能な人工知能(XAI)メソッドを組み合わせる。
論文 参考訳(メタデータ) (2020-09-22T13:07:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。