論文の概要: Capacity Constraint Analysis Using Object Detection for Smart
Manufacturing
- arxiv url: http://arxiv.org/abs/2402.00243v1
- Date: Wed, 31 Jan 2024 23:52:14 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-02 16:59:57.184489
- Title: Capacity Constraint Analysis Using Object Detection for Smart
Manufacturing
- Title(参考訳): スマート製造のための物体検出を用いた容量制約解析
- Authors: Hafiz Mughees Ahmad, Afshin Rahimi, Khizer Hayat
- Abstract要約: 我々は,この問題を解決するために,畳み込みニューラルネットワーク(CNN)に基づくODモデルを開発した。
このモデルは、製造現場における椅子や個人の存在を正確に識別するために訓練されている。
識別されたオブジェクトはCNNベースのトラッカーに渡され、ワークステーションのライフサイクルを通して追跡される。
- 参考スコア(独自算出の注目度): 2.007345596217044
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The increasing popularity of Deep Learning (DL) based Object Detection (OD)
methods and their real-world applications have opened new venues in smart
manufacturing. Traditional industries struck by capacity constraints after
Coronavirus Disease (COVID-19) require non-invasive methods for in-depth
operations' analysis to optimize and increase their revenue. In this study, we
have initially developed a Convolutional Neural Network (CNN) based OD model to
tackle this issue. This model is trained to accurately identify the presence of
chairs and individuals on the production floor. The identified objects are then
passed to the CNN based tracker, which tracks them throughout their life cycle
in the workstation. The extracted meta-data is further processed through a
novel framework for the capacity constraint analysis. We identified that the
Station C is only 70.6% productive through 6 months. Additionally, the time
spent at each station is recorded and aggregated for each object. This data
proves helpful in conducting annual audits and effectively managing labor and
material over time.
- Abstract(参考訳): ディープラーニング(DL)ベースのオブジェクト検出(OD)手法の普及と,その実世界の応用により,スマートマニュファクチャリングの新たな場が開かれた。
コロナウイルス(COVID-19)以降の容量制限に苦しめられた伝統的産業は、収益を最適化し増加させるために、詳細な業務分析のための非侵襲的な方法を必要としている。
本研究ではまず,この問題に対処する畳み込みニューラルネットワーク(CNN)を用いたODモデルを開発した。
このモデルは、生産フロアにおける椅子や個人の存在を正確に識別するために訓練される。
識別されたオブジェクトはcnnベースのトラッカーに渡され、ワークステーションのライフサイクルを通して追跡される。
抽出したメタデータは、キャパシティ制約解析のための新しいフレームワークによってさらに処理される。
ステーションcの生産性は6ヶ月で70.6%に過ぎなかった。
また、各駅での使用時間を記録し、各オブジェクトに対して集約する。
このデータは、年次監査を行い、時間とともに労働や材料を効果的に管理するのに役立つ。
関連論文リスト
- An Efficient Contrastive Unimodal Pretraining Method for EHR Time Series Data [35.943089444017666]
本稿では,長期臨床経過データに適した比較事前学習法を提案する。
本モデルでは, 臨床医が患者の症状についてより深い知見を得られるように, 欠損測定をインプットする能力を示す。
論文 参考訳(メタデータ) (2024-10-11T19:05:25Z) - Multi-Scale Convolutional LSTM with Transfer Learning for Anomaly Detection in Cellular Networks [1.1432909951914676]
本研究では,トランスファーラーニング(TL)を用いたマルチスケール畳み込みLSTMによるセルネットワークの異常検出手法を提案する。
モデルは最初、公開データセットを使用してスクラッチからトレーニングされ、典型的なネットワーク動作を学習する。
我々は,スクラッチから訓練したモデルの性能と,TLを用いた微調整モデルの性能を比較した。
論文 参考訳(メタデータ) (2024-09-30T17:51:54Z) - Learning Objective-Specific Active Learning Strategies with Attentive
Neural Processes [72.75421975804132]
学び アクティブラーニング(LAL)は、アクティブラーニング戦略自体を学ぶことを提案し、与えられた設定に適応できるようにする。
能動学習問題の対称性と独立性を利用した新しい分類法を提案する。
私たちのアプローチは、筋電図から学ぶことに基づいており、モデルに標準ではない目的に適応する能力を与えます。
論文 参考訳(メタデータ) (2023-09-11T14:16:37Z) - Continual Learning in Predictive Autoscaling [17.438074717702726]
予測オートスケーリングは、動的クラウド環境におけるサービスレベルの目標(SLO)を保証するために、サーバのワークロードを予測し、事前にリソースを準備するために使用される。
本稿では,リプレイに基づく連続学習手法,すなわち密度ベースのメモリ選択とHintベースのネットワーク学習モデルを提案する。
提案手法は、メモリ容量と予測精度の観点から、最先端の連続学習法より優れている。
論文 参考訳(メタデータ) (2023-07-29T09:29:09Z) - Simplifying Model-based RL: Learning Representations, Latent-space
Models, and Policies with One Objective [142.36200080384145]
自己整合性を維持しつつ高いリターンを達成するために,潜在空間モデルとポリシーを協調的に最適化する単一目的を提案する。
得られたアルゴリズムは, モデルベースおよびモデルフリーRL手法のサンプル効率に適合するか, 改善することを示した。
論文 参考訳(メタデータ) (2022-09-18T03:51:58Z) - DAAIN: Detection of Anomalous and Adversarial Input using Normalizing
Flows [52.31831255787147]
我々は、アウト・オブ・ディストリビューション(OOD)インプットと敵攻撃(AA)を検出する新しい手法であるDAINを導入する。
本手法は,ニューラルネットワークの内部動作を監視し,活性化分布の密度推定器を学習する。
当社のモデルは,特別なアクセラレータを必要とせずに,効率的な計算とデプロイが可能な単一のGPUでトレーニングすることが可能です。
論文 参考訳(メタデータ) (2021-05-30T22:07:13Z) - Data-efficient Weakly-supervised Learning for On-line Object Detection
under Domain Shift in Robotics [24.878465999976594]
文献では、Deep Convolutional Neural Networks (DCNNs)に基づく多数のオブジェクト検出方法が提案されている。
これらの手法はロボティクスに重要な制限がある:オフラインデータのみに学習するとバイアスが発生し、新しいタスクへの適応を防ぐことができる。
本研究では,弱い教師付き学習がこれらの問題にどのように対処できるかを検討する。
論文 参考訳(メタデータ) (2020-12-28T16:36:11Z) - An Uncertainty-Driven GCN Refinement Strategy for Organ Segmentation [53.425900196763756]
本研究では,不確実性解析とグラフ畳み込みネットワークに基づくセグメンテーション改善手法を提案する。
半教師付きグラフ学習問題を定式化するために、特定の入力ボリュームにおける畳み込みネットワークの不確実性レベルを用いる。
本手法は膵臓で1%,脾臓で2%向上し,最先端のCRF改善法よりも優れていた。
論文 参考訳(メタデータ) (2020-12-06T18:55:07Z) - Learning to Continuously Optimize Wireless Resource In Episodically
Dynamic Environment [55.91291559442884]
この研究は、データ駆動型手法が動的環境で継続的に学習し、最適化できる方法論を開発する。
本稿では,無線システム学習のモデリングプロセスに連続学習の概念を構築することを提案する。
我々の設計は、異なるデータサンプル間で「一定の公正性を保証する」新しいmin-maxの定式化に基づいている。
論文 参考訳(メタデータ) (2020-11-16T08:24:34Z) - Reducing DNN Labelling Cost using Surprise Adequacy: An Industrial Case
Study for Autonomous Driving [23.054842564447895]
ディープニューラルネットワーク(Deep Neural Networks, DNN)は、自動運転に不可欠なタスクにおける優れたパフォーマンスのため、自動車業界で急速に採用されている。
本稿では、サプライズ・アデクシー(SA)とモデル性能の相関を利用して、DNNに基づくオブジェクトセグメンテーションの開発を改善する方法について述べる。
産業ケーススタディでは,不正確な評価で最大50%のコスト削減が可能であった。
論文 参考訳(メタデータ) (2020-05-29T06:33:55Z) - Dynamic Refinement Network for Oriented and Densely Packed Object
Detection [75.29088991850958]
本稿では,機能選択モジュール (FSM) と動的改善ヘッド (DRH) の2つの新しいコンポーネントからなる動的精細化ネットワークを提案する。
我々のFSMは、ニューロンがターゲットオブジェクトの形状や向きに応じて受容野を調整できるのに対して、DRHはオブジェクト認識の方法で動的に予測を洗練させる。
我々は、DOTA、HRSC2016、SKU110K、および我々のSKU110K-Rデータセットを含むいくつかの公開ベンチマークで定量的評価を行う。
論文 参考訳(メタデータ) (2020-05-20T11:35:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。