論文の概要: Multimodal Embodied Interactive Agent for Cafe Scene
- arxiv url: http://arxiv.org/abs/2402.00290v1
- Date: Thu, 1 Feb 2024 02:43:20 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-02 16:48:58.538979
- Title: Multimodal Embodied Interactive Agent for Cafe Scene
- Title(参考訳): カフェシーンにおけるマルチモーダルエンボディ型インタラクティブエージェント
- Authors: Yang Liu, Xinshuai Song, Kaixuan Jiang, Weixing Chen, Jingzhou Luo,
Guanbin Li, Liang Lin
- Abstract要約: 本稿では,自然言語で表現されたハイレベルなタスクを実行可能なアクションのシーケンスに変換するための,MEIA(Multimodal Embodied Interactive Agent)を提案する。
具体的には,シーンの視覚的記憶を介し,大規模モデルとの組込み制御を容易にする,新しいMultimodal Environment Memory (MEM) モジュールを提案する。
- 参考スコア(独自算出の注目度): 86.81802927029976
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the surge in the development of large language models, embodied
intelligence has attracted increasing attention. Nevertheless, prior works on
embodied intelligence typically encode scene or historical memory in an
unimodal manner, either visual or linguistic, which complicates the alignment
of the model's action planning with embodied control. To overcome this
limitation, we introduce the Multimodal Embodied Interactive Agent (MEIA),
capable of translating high-level tasks expressed in natural language into a
sequence of executable actions. Specifically, we propose a novel Multimodal
Environment Memory (MEM) module, facilitating the integration of embodied
control with large models through the visual-language memory of scenes. This
capability enables MEIA to generate executable action plans based on diverse
requirements and the robot's capabilities. We conduct experiments in a dynamic
virtual cafe environment, utilizing multiple large models through zero-shot
learning, and carefully design scenarios for various situations. The
experimental results showcase the promising performance of our MEIA in various
embodied interactive tasks.
- Abstract(参考訳): 大規模言語モデルの開発が急増し、具体化された知性が注目を集めている。
それにもかかわらず、エンボディドインテリジェンスに関する先行研究は、通常、視覚的または言語的に、シーンまたは歴史的記憶を一様の方法で符号化する。
この制限を克服するために、自然言語で表現された高レベルタスクを実行可能なアクションのシーケンスに変換することができるMultimodal Embodied Interactive Agent (MEIA)を導入する。
具体的には,シーンの視覚的記憶を介し,大規模モデルとの組込み制御を容易にする,新しいMultimodal Environment Memory (MEM) モジュールを提案する。
この能力により、MEIAは多様な要件とロボットの能力に基づいて実行可能なアクションプランを生成することができる。
動的仮想カフェ環境で実験を行い,ゼロショット学習を通じて複数の大規模モデルを活用し,様々な状況に対してシナリオを慎重に設計する。
実験の結果,様々な対話型タスクにおけるMEIAの有望な性能が示された。
関連論文リスト
- LangSuitE: Planning, Controlling and Interacting with Large Language Models in Embodied Text Environments [70.91258869156353]
テキストエンボディの世界における6つの代表的具体的タスクを特徴とする多目的・シミュレーション不要なテストベッドであるLangSuitEを紹介する。
以前のLLMベースのテストベッドと比較すると、LangSuitEは複数のシミュレーションエンジンを使わずに、多様な環境への適応性を提供する。
具体化された状態の履歴情報を要約した新しいチェーン・オブ・ソート(CoT)スキーマであるEmMemを考案する。
論文 参考訳(メタデータ) (2024-06-24T03:36:29Z) - Bridging Language, Vision and Action: Multimodal VAEs in Robotic Manipulation Tasks [0.0]
本研究では,ロボット操作分野における教師なし視覚-言語-アクションマッピングに着目した。
本研究では,シミュレータにおけるモデルの性能を最大55%向上させるモデル不変学習法を提案する。
我々の研究は、ロボット運動軌跡の教師なし学習に現在のマルチモーダルVAEを使用することの潜在的な利点と限界にも光を当てている。
論文 参考訳(メタデータ) (2024-04-02T13:25:16Z) - On the Multi-turn Instruction Following for Conversational Web Agents [83.51251174629084]
本稿では,ユーザと環境の両方で複数回にまたがる高度なインタラクションを必要とする,対話型Webナビゲーションの新たなタスクを紹介する。
本稿では,メモリ利用と自己回帰技術を用いた自己反射型メモリ拡張計画(Self-MAP)を提案する。
論文 参考訳(メタデータ) (2024-02-23T02:18:12Z) - An Interactive Agent Foundation Model [49.77861810045509]
本稿では,AIエージェントを訓練するための新しいマルチタスクエージェントトレーニングパラダイムを用いた対話型エージェント基礎モデルを提案する。
トレーニングパラダイムは、視覚マスク付きオートエンコーダ、言語モデリング、次世代の予測など、多様な事前学習戦略を統一する。
私たちは、ロボティクス、ゲームAI、ヘルスケアという3つの異なる領域でフレームワークのパフォーマンスを実演します。
論文 参考訳(メタデータ) (2024-02-08T18:58:02Z) - Veagle: Advancements in Multimodal Representation Learning [0.0]
本稿では,既存モデルのマルチモーダル能力を向上するための新しいアプローチを提案する。
提案したモデルであるVeagleは、以前の作品の成功と洞察にインスパイアされたユニークなメカニズムを取り入れています。
以上の結果から,Veagleは既存のモデルよりも優れた性能を示し,性能は5-6%向上した。
論文 参考訳(メタデータ) (2024-01-18T12:45:25Z) - Expanding Frozen Vision-Language Models without Retraining: Towards
Improved Robot Perception [0.0]
視覚言語モデル(VLM)は、視覚的質問応答と推論タスクにおいて強力な能力を示している。
本稿では,異なるモダリティの埋め込み空間を視覚埋め込み空間に整列させる手法を示す。
複数モードを入力として使用すると、VLMのシーン理解が向上し、様々なタスクにおける全体的なパフォーマンスが向上することを示す。
論文 参考訳(メタデータ) (2023-08-31T06:53:55Z) - MM-REACT: Prompting ChatGPT for Multimodal Reasoning and Action [96.33509740612486]
MM-REACTは、マルチモーダル推論とアクションを達成するために、ChatGPTとビジョンエキスパートのプールを統合するシステムパラダイムである。
MM-REACTのプロンプト設計により、言語モデルはマルチモーダル情報を受け入れ、関連づけ、処理することができる。
論文 参考訳(メタデータ) (2023-03-20T18:31:47Z) - Chat with the Environment: Interactive Multimodal Perception Using Large
Language Models [19.623070762485494]
大型言語モデル(LLM)は、数発のロボット計画において顕著な推論能力を示している。
本研究は,LLMがマルチモーダル環境下での対話型ロボットの動作を制御し,高レベルな計画と推論能力を提供することを示す。
論文 参考訳(メタデータ) (2023-03-14T23:01:27Z) - PaLM-E: An Embodied Multimodal Language Model [101.29116156731762]
本研究では,実世界の連続型センサを言語モデルに組み込むための具体的言語モデルを提案する。
我々は、複数の具体的タスクのために、事前訓練された大規模言語モデルとともに、これらのエンコーディングをエンドツーエンドにトレーニングする。
562Bパラメータを持つ大モデル PaLM-E-562B は、OK-VQA 上での最先端性能を持つ視覚言語ジェネラリストである。
論文 参考訳(メタデータ) (2023-03-06T18:58:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。