A practical existence theorem for reduced order models based on convolutional autoencoders
- URL: http://arxiv.org/abs/2402.00435v2
- Date: Mon, 24 Jun 2024 15:42:52 GMT
- Title: A practical existence theorem for reduced order models based on convolutional autoencoders
- Authors: Nicola Rares Franco, Simone Brugiapaglia,
- Abstract summary: Deep learning has gained increasing popularity in the fields of Partial Differential Equations (PDEs) and Reduced Order Modeling (ROM)
CNN-based autoencoders have proven extremely effective, outperforming established techniques, such as the reduced basis method, when dealing with complex nonlinear problems.
We provide a new practical existence theorem for CNN-based autoencoders when the parameter-to-solution map is holomorphic.
- Score: 0.4604003661048266
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, deep learning has gained increasing popularity in the fields of Partial Differential Equations (PDEs) and Reduced Order Modeling (ROM), providing domain practitioners with new powerful data-driven techniques such as Physics-Informed Neural Networks (PINNs), Neural Operators, Deep Operator Networks (DeepONets) and Deep-Learning based ROMs (DL-ROMs). In this context, deep autoencoders based on Convolutional Neural Networks (CNNs) have proven extremely effective, outperforming established techniques, such as the reduced basis method, when dealing with complex nonlinear problems. However, despite the empirical success of CNN-based autoencoders, there are only a few theoretical results supporting these architectures, usually stated in the form of universal approximation theorems. In particular, although the existing literature provides users with guidelines for designing convolutional autoencoders, the subsequent challenge of learning the latent features has been barely investigated. Furthermore, many practical questions remain unanswered, e.g., the number of snapshots needed for convergence or the neural network training strategy. In this work, using recent techniques from sparse high-dimensional function approximation, we fill some of these gaps by providing a new practical existence theorem for CNN-based autoencoders when the parameter-to-solution map is holomorphic. This regularity assumption arises in many relevant classes of parametric PDEs, such as the parametric diffusion equation, for which we discuss an explicit application of our general theory.
Related papers
- Learning smooth functions in high dimensions: from sparse polynomials to deep neural networks [0.9749638953163389]
Learning approximations to smooth target functions of many variables from finite sets of pointwise samples is an important task in scientific computing.
Significant advances have been made in the last decade towards efficient methods for doing this.
Recent advances have been made in the relevant approximation theory and analysis of these techniques.
arXiv Detail & Related papers (2024-04-04T19:07:21Z) - On the latent dimension of deep autoencoders for reduced order modeling
of PDEs parametrized by random fields [0.6827423171182154]
This paper provides some theoretical insights about the use of Deep Learning-ROMs in the presence of random fields.
We derive explicit error bounds that can guide domain practitioners when choosing the latent dimension of deep autoencoders.
We evaluate the practical usefulness of our theory by means of numerical experiments.
arXiv Detail & Related papers (2023-10-18T16:38:23Z) - Hypernetwork-based Meta-Learning for Low-Rank Physics-Informed Neural
Networks [24.14254861023394]
In this study, we suggest a path that potentially opens up a possibility for physics-informed neural networks (PINNs) to be considered as one such solver.
PINNs have pioneered a proper integration of deep-learning and scientific computing, but they require repetitive time-consuming training of neural networks.
We propose a lightweight low-rank PINNs containing only hundreds of model parameters and an associated hypernetwork-based meta-learning algorithm.
arXiv Detail & Related papers (2023-10-14T08:13:43Z) - From NeurODEs to AutoencODEs: a mean-field control framework for
width-varying Neural Networks [68.8204255655161]
We propose a new type of continuous-time control system, called AutoencODE, based on a controlled field that drives dynamics.
We show that many architectures can be recovered in regions where the loss function is locally convex.
arXiv Detail & Related papers (2023-07-05T13:26:17Z) - Deep learning applied to computational mechanics: A comprehensive
review, state of the art, and the classics [77.34726150561087]
Recent developments in artificial neural networks, particularly deep learning (DL), are reviewed in detail.
Both hybrid and pure machine learning (ML) methods are discussed.
History and limitations of AI are recounted and discussed, with particular attention at pointing out misstatements or misconceptions of the classics.
arXiv Detail & Related papers (2022-12-18T02:03:00Z) - RBF-MGN:Solving spatiotemporal PDEs with Physics-informed Graph Neural
Network [4.425915683879297]
We propose a novel framework based on graph neural networks (GNNs) and radial basis function finite difference (RBF-FD)
RBF-FD is used to construct a high-precision difference format of the differential equations to guide model training.
We illustrate the generalizability, accuracy, and efficiency of the proposed algorithms on different PDE parameters.
arXiv Detail & Related papers (2022-12-06T10:08:02Z) - Learning Low Dimensional State Spaces with Overparameterized Recurrent
Neural Nets [57.06026574261203]
We provide theoretical evidence for learning low-dimensional state spaces, which can also model long-term memory.
Experiments corroborate our theory, demonstrating extrapolation via learning low-dimensional state spaces with both linear and non-linear RNNs.
arXiv Detail & Related papers (2022-10-25T14:45:15Z) - A New Clustering-Based Technique for the Acceleration of Deep
Convolutional Networks [2.7393821783237184]
Model Compression and Acceleration (MCA) techniques are used to transform large pre-trained networks into smaller models.
We propose a clustering-based approach that is able to increase the number of employed centroids/representatives.
This is achieved by imposing a special structure to the employed representatives, which is enabled by the particularities of the problem at hand.
arXiv Detail & Related papers (2021-07-19T18:22:07Z) - ALF: Autoencoder-based Low-rank Filter-sharing for Efficient
Convolutional Neural Networks [63.91384986073851]
We propose the autoencoder-based low-rank filter-sharing technique technique (ALF)
ALF shows a reduction of 70% in network parameters, 61% in operations and 41% in execution time, with minimal loss in accuracy.
arXiv Detail & Related papers (2020-07-27T09:01:22Z) - An Ode to an ODE [78.97367880223254]
We present a new paradigm for Neural ODE algorithms, called ODEtoODE, where time-dependent parameters of the main flow evolve according to a matrix flow on the group O(d)
This nested system of two flows provides stability and effectiveness of training and provably solves the gradient vanishing-explosion problem.
arXiv Detail & Related papers (2020-06-19T22:05:19Z) - Belief Propagation Reloaded: Learning BP-Layers for Labeling Problems [83.98774574197613]
We take one of the simplest inference methods, a truncated max-product Belief propagation, and add what is necessary to make it a proper component of a deep learning model.
This BP-Layer can be used as the final or an intermediate block in convolutional neural networks (CNNs)
The model is applicable to a range of dense prediction problems, is well-trainable and provides parameter-efficient and robust solutions in stereo, optical flow and semantic segmentation.
arXiv Detail & Related papers (2020-03-13T13:11:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.