Correlated Optical Convolutional Neural Network with Quantum Speedup
- URL: http://arxiv.org/abs/2402.00504v1
- Date: Thu, 1 Feb 2024 11:17:09 GMT
- Title: Correlated Optical Convolutional Neural Network with Quantum Speedup
- Authors: Yifan Sun, Qian Li, Ling-Jun Kong, and Xiangdong Zhang
- Abstract summary: We show that the correlated optical convolutional neural network (COCNN) can exhibit quantum speedup in the training process.
Our proposal opens up a new avenue for realizing the ONNs with the quantum speedup.
- Score: 9.194748023567886
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Compared with electrical neural networks, optical neural networks (ONNs) have
the potentials to break the limit of the bandwidth and reduce the consumption
of energy, and therefore draw much attention in recent years. By far, several
types of ONNs have been implemented. However, the current ONNs cannot realize
the acceleration as powerful as that indicated by the models like quantum
neural networks. How to construct and realize an ONN with the quantum speedup
is a huge challenge. Here, we propose theoretically and demonstrate
experimentally a new type of optical convolutional neural network by
introducing the optical correlation. It is called the correlated optical
convolutional neural network (COCNN). We show that the COCNN can exhibit
quantum speedup in the training process. The character is verified from the two
aspects. One is the direct illustration of the faster convergence by comparing
the loss function curves of the COCNN with that of the traditional
convolutional neural network (CNN). Such a result is compatible with the
training performance of the recently proposed quantum convolutional neural
network (QCNN). The other is the demonstration of the COCNNs capability to
perform the QCNN phase recognition circuit, validating the connection between
the COCNN and the QCNN. Furthermore, we take the COCNN analog to the 3-qubit
QCNN phase recognition circuit as an example and perform an experiment to show
the soundness and the feasibility of it. The results perfectly match the
theoretical calculations. Our proposal opens up a new avenue for realizing the
ONNs with the quantum speedup, which will benefit the information processing in
the era of big data.
Related papers
- CTRQNets & LQNets: Continuous Time Recurrent and Liquid Quantum Neural Networks [76.53016529061821]
Liquid Quantum Neural Network (LQNet) and Continuous Time Recurrent Quantum Neural Network (CTRQNet) developed.
LQNet and CTRQNet achieve accuracy increases as high as 40% on CIFAR 10 through binary classification.
arXiv Detail & Related papers (2024-08-28T00:56:03Z) - Parallel Proportional Fusion of Spiking Quantum Neural Network for Optimizing Image Classification [10.069224006497162]
We introduce a novel architecture termed Parallel Proportional Fusion of Quantum and Spiking Neural Networks (PPF-QSNN)
The proposed PPF-QSNN outperforms both the existing spiking neural network and the serial quantum neural network across metrics such as accuracy, loss, and robustness.
This study lays the groundwork for the advancement and application of quantum advantage in artificial intelligent computations.
arXiv Detail & Related papers (2024-04-01T10:35:35Z) - A Quantum Convolutional Neural Network Approach for Object Detection and
Classification [0.0]
The time and accuracy of QCNNs are compared with classical CNNs and ANN models under different conditions.
The analysis shows that QCNNs have the potential to outperform both classical CNNs and ANN models in terms of accuracy and efficiency for certain applications.
arXiv Detail & Related papers (2023-07-17T02:38:04Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
We propose quantum graph convolutional networks (QuanGCN), which learns the local message passing among nodes with the sequence of crossing-gate quantum operations.
To mitigate the inherent noises from modern quantum devices, we apply sparse constraint to sparsify the nodes' connections.
Our QuanGCN is functionally comparable or even superior than the classical algorithms on several benchmark graph datasets.
arXiv Detail & Related papers (2022-11-09T21:43:16Z) - Spiking Neural Network Decision Feedback Equalization [70.3497683558609]
We propose an SNN-based equalizer with a feedback structure akin to the decision feedback equalizer (DFE)
We show that our approach clearly outperforms conventional linear equalizers for three different exemplary channels.
The proposed SNN with a decision feedback structure enables the path to competitive energy-efficient transceivers.
arXiv Detail & Related papers (2022-11-09T09:19:15Z) - Hybrid SNN-ANN: Energy-Efficient Classification and Object Detection for
Event-Based Vision [64.71260357476602]
Event-based vision sensors encode local pixel-wise brightness changes in streams of events rather than image frames.
Recent progress in object recognition from event-based sensors has come from conversions of deep neural networks.
We propose a hybrid architecture for end-to-end training of deep neural networks for event-based pattern recognition and object detection.
arXiv Detail & Related papers (2021-12-06T23:45:58Z) - QDCNN: Quantum Dilated Convolutional Neural Network [1.52292571922932]
We propose a novel hybrid quantum-classical algorithm called quantum dilated convolutional neural networks (QDCNNs)
Our method extends the concept of dilated convolution, which has been widely applied in modern deep learning algorithms, to the context of hybrid neural networks.
The proposed QDCNNs are able to capture larger context during the quantum convolution process while reducing the computational cost.
arXiv Detail & Related papers (2021-10-29T10:24:34Z) - A Quantum Convolutional Neural Network for Image Classification [7.745213180689952]
We propose a novel neural network model named Quantum Convolutional Neural Network (QCNN)
QCNN is based on implementable quantum circuits and has a similar structure as classical convolutional neural networks.
Numerical simulation results on the MNIST dataset demonstrate the effectiveness of our model.
arXiv Detail & Related papers (2021-07-08T06:47:34Z) - QFCNN: Quantum Fourier Convolutional Neural Network [4.344289435743451]
We propose a new hybrid quantum-classical circuit, namely Quantum Fourier Convolutional Network (QFCN)
Our model achieves exponential speed-up compared with classical CNN theoretically and improves over the existing best result of quantum CNN.
We demonstrate the potential of this architecture by applying it to different deep learning tasks, including traffic prediction and image classification.
arXiv Detail & Related papers (2021-06-19T04:37:39Z) - Toward Trainability of Quantum Neural Networks [87.04438831673063]
Quantum Neural Networks (QNNs) have been proposed as generalizations of classical neural networks to achieve the quantum speed-up.
Serious bottlenecks exist for training QNNs due to the vanishing with gradient rate exponential to the input qubit number.
We show that QNNs with tree tensor and step controlled structures for the application of binary classification. Simulations show faster convergent rates and better accuracy compared to QNNs with random structures.
arXiv Detail & Related papers (2020-11-12T08:32:04Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
Spiking neural networks (SNNs) have shown advantages over traditional artificial neural networks (ANNs) for low latency and high computational efficiency.
We propose a novel ANN-to-SNN conversion and layer-wise learning framework for rapid and efficient pattern recognition.
arXiv Detail & Related papers (2020-07-02T15:38:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.