A Quantum Convolutional Neural Network Approach for Object Detection and
Classification
- URL: http://arxiv.org/abs/2307.08204v1
- Date: Mon, 17 Jul 2023 02:38:04 GMT
- Title: A Quantum Convolutional Neural Network Approach for Object Detection and
Classification
- Authors: Gowri Namratha Meedinti, Kandukuri Sai Srirekha and Radhakrishnan
Delhibabu
- Abstract summary: The time and accuracy of QCNNs are compared with classical CNNs and ANN models under different conditions.
The analysis shows that QCNNs have the potential to outperform both classical CNNs and ANN models in terms of accuracy and efficiency for certain applications.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents a comprehensive evaluation of the potential of Quantum
Convolutional Neural Networks (QCNNs) in comparison to classical Convolutional
Neural Networks (CNNs) and Artificial / Classical Neural Network (ANN) models.
With the increasing amount of data, utilizing computing methods like CNN in
real-time has become challenging. QCNNs overcome this challenge by utilizing
qubits to represent data in a quantum environment and applying CNN structures
to quantum computers. The time and accuracy of QCNNs are compared with
classical CNNs and ANN models under different conditions such as batch size and
input size. The maximum complexity level that QCNNs can handle in terms of
these parameters is also investigated. The analysis shows that QCNNs have the
potential to outperform both classical CNNs and ANN models in terms of accuracy
and efficiency for certain applications, demonstrating their promise as a
powerful tool in the field of machine learning.
Related papers
- CTRQNets & LQNets: Continuous Time Recurrent and Liquid Quantum Neural Networks [76.53016529061821]
Liquid Quantum Neural Network (LQNet) and Continuous Time Recurrent Quantum Neural Network (CTRQNet) developed.
LQNet and CTRQNet achieve accuracy increases as high as 40% on CIFAR 10 through binary classification.
arXiv Detail & Related papers (2024-08-28T00:56:03Z) - Impact of Data Augmentation on QCNNs [1.1510009152620664]
Quantum Convolutional Neural Networks (QCNNs) are proposed as a novel generalization to CNNs by using quantum mechanisms.
This paper implements and compares both CNNs and QCNNs by testing losses and prediction accuracy on three commonly used datasets.
arXiv Detail & Related papers (2023-12-01T05:28:19Z) - Quantum Recurrent Neural Networks for Sequential Learning [11.133759363113867]
We propose a new kind of quantum recurrent neural network (QRNN) to find quantum advantageous applications in the near term.
Our QRNN is built by stacking the QRBs in a staggered way that can greatly reduce the algorithm's requirement with regard to the coherent time of quantum devices.
The numerical experiments show that our QRNN achieves much better performance in prediction (classification) accuracy against the classical RNN and state-of-the-art QNN models for sequential learning.
arXiv Detail & Related papers (2023-02-07T04:04:39Z) - Scalable Quantum Convolutional Neural Networks [12.261689483681145]
We propose a new version of quantum neural network (QCNN) named scalable quantum convolutional neural network (sQCNN)
In addition, using the fidelity of QC, we propose an sQCNN training algorithm named reverse fidelity training (RF-Train) that maximizes the performance of sQCNN.
arXiv Detail & Related papers (2022-09-26T02:07:00Z) - Hybrid SNN-ANN: Energy-Efficient Classification and Object Detection for
Event-Based Vision [64.71260357476602]
Event-based vision sensors encode local pixel-wise brightness changes in streams of events rather than image frames.
Recent progress in object recognition from event-based sensors has come from conversions of deep neural networks.
We propose a hybrid architecture for end-to-end training of deep neural networks for event-based pattern recognition and object detection.
arXiv Detail & Related papers (2021-12-06T23:45:58Z) - Quantum-inspired Complex Convolutional Neural Networks [17.65730040410185]
We improve the quantum-inspired neurons by exploiting the complex-valued weights which have richer representational capacity and better non-linearity.
We draw the models of quantum-inspired convolutional neural networks (QICNNs) capable of processing high-dimensional data.
The performance of classification accuracy of the five QICNNs are tested on the MNIST and CIFAR-10 datasets.
arXiv Detail & Related papers (2021-10-31T03:10:48Z) - Quantum convolutional neural network for classical data classification [0.8057006406834467]
We benchmark fully parameterized quantum convolutional neural networks (QCNNs) for classical data classification.
We propose a quantum neural network model inspired by CNN that only uses two-qubit interactions throughout the entire algorithm.
arXiv Detail & Related papers (2021-08-02T06:48:34Z) - The dilemma of quantum neural networks [63.82713636522488]
We show that quantum neural networks (QNNs) fail to provide any benefit over classical learning models.
QNNs suffer from the severely limited effective model capacity, which incurs poor generalization on real-world datasets.
These results force us to rethink the role of current QNNs and to design novel protocols for solving real-world problems with quantum advantages.
arXiv Detail & Related papers (2021-06-09T10:41:47Z) - Toward Trainability of Quantum Neural Networks [87.04438831673063]
Quantum Neural Networks (QNNs) have been proposed as generalizations of classical neural networks to achieve the quantum speed-up.
Serious bottlenecks exist for training QNNs due to the vanishing with gradient rate exponential to the input qubit number.
We show that QNNs with tree tensor and step controlled structures for the application of binary classification. Simulations show faster convergent rates and better accuracy compared to QNNs with random structures.
arXiv Detail & Related papers (2020-11-12T08:32:04Z) - Decentralizing Feature Extraction with Quantum Convolutional Neural
Network for Automatic Speech Recognition [101.69873988328808]
We build upon a quantum convolutional neural network (QCNN) composed of a quantum circuit encoder for feature extraction.
An input speech is first up-streamed to a quantum computing server to extract Mel-spectrogram.
The corresponding convolutional features are encoded using a quantum circuit algorithm with random parameters.
The encoded features are then down-streamed to the local RNN model for the final recognition.
arXiv Detail & Related papers (2020-10-26T03:36:01Z) - On the learnability of quantum neural networks [132.1981461292324]
We consider the learnability of the quantum neural network (QNN) built on the variational hybrid quantum-classical scheme.
We show that if a concept can be efficiently learned by QNN, then it can also be effectively learned by QNN even with gate noise.
arXiv Detail & Related papers (2020-07-24T06:34:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.