論文の概要: Uncertainty-Aware Partial-Label Learning
- arxiv url: http://arxiv.org/abs/2402.00592v1
- Date: Thu, 1 Feb 2024 13:41:44 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-02 15:11:10.338453
- Title: Uncertainty-Aware Partial-Label Learning
- Title(参考訳): 不確実性を考慮した部分ラベル学習
- Authors: Tobias Fuchs, Florian Kalinke, Klemens B\"ohm
- Abstract要約: 本稿では, Dempster-Shafer 理論を応用した, 近接する部分ラベル学習アルゴリズムを提案する。
人工的および実世界のデータセットに対する実験により,提案手法はよく校正された不確実性推定を提供し,競合予測性能を実現することを示した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In real-world applications, one often encounters ambiguously labeled data,
where different annotators assign conflicting class labels. Partial-label
learning allows training classifiers in this weakly supervised setting. While
state-of-the-art methods already feature good predictive performance, they
often suffer from miscalibrated uncertainty estimates. However, having
well-calibrated uncertainty estimates is important, especially in
safety-critical domains like medicine and autonomous driving. In this article,
we propose a novel nearest-neighbor-based partial-label-learning algorithm that
leverages Dempster-Shafer theory. Extensive experiments on artificial and
real-world datasets show that the proposed method provides a well-calibrated
uncertainty estimate and achieves competitive prediction performance.
Additionally, we prove that our algorithm is risk-consistent.
- Abstract(参考訳): 現実世界のアプリケーションでは、曖昧にラベル付けされたデータに遭遇することが多い。
部分ラベル学習は、この弱い教師付き設定で分類器の訓練を可能にする。
最先端の手法はすでに優れた予測性能を特徴としているが、しばしば誤った不確実性推定に悩まされる。
しかし、特に医療や自律運転のような安全クリティカルな領域では、よく校正された不確実性の推定が重要である。
本稿では, Dempster-Shafer 理論を応用した, 近接する部分ラベル学習アルゴリズムを提案する。
人工および実世界のデータセットに関する広範囲な実験により,提案手法が十分な不確実性推定を提供し,競合予測性能を実現することが示された。
さらに、アルゴリズムがリスク一貫性があることを証明します。
関連論文リスト
- Probably Approximately Precision and Recall Learning [62.912015491907994]
精度とリコールは機械学習の基本的な指標である。
一方的なフィードバック – トレーニング中にのみ肯定的な例が観察される – は,多くの実践的な問題に固有のものだ。
PAC学習フレームワークでは,各仮説をグラフで表現し,エッジは肯定的な相互作用を示す。
論文 参考訳(メタデータ) (2024-11-20T04:21:07Z) - Augmented prediction of a true class for Positive Unlabeled data under selection bias [0.8594140167290099]
本稿では, 観測時刻をラベル付けした正のアンラベル(PU)データに対して, 新たな観測環境を提案する。
我々は、追加情報は予測に重要であると主張し、このタスクを"Augmented PU prediction"と呼んでいる。
このようなシナリオで経験的ベイズ則のいくつかの変種を導入し、それらの性能について検討する。
論文 参考訳(メタデータ) (2024-07-14T19:58:01Z) - AllMatch: Exploiting All Unlabeled Data for Semi-Supervised Learning [5.0823084858349485]
提案するSSLアルゴリズムであるAllMatchは,擬似ラベル精度の向上とラベルなしデータの100%利用率の向上を実現する。
その結果、AllMatchは既存の最先端メソッドよりも一貫して優れています。
論文 参考訳(メタデータ) (2024-06-22T06:59:52Z) - XAL: EXplainable Active Learning Makes Classifiers Better Low-resource Learners [71.8257151788923]
低リソーステキスト分類のための新しい説明可能なアクティブラーニングフレームワーク(XAL)を提案する。
XALは分類器に対して、推論を正当化し、合理的な説明ができないラベルのないデータを掘り下げることを推奨している。
6つのデータセットの実験では、XALは9つの強いベースラインに対して一貫した改善を達成している。
論文 参考訳(メタデータ) (2023-10-09T08:07:04Z) - ASPEST: Bridging the Gap Between Active Learning and Selective
Prediction [56.001808843574395]
選択予測は、不確実な場合の予測を棄却する信頼性のあるモデルを学ぶことを目的としている。
アクティブラーニングは、最も有意義な例を問うことで、ラベリングの全体、すなわち人間の依存度を下げることを目的としている。
本研究では,移動対象領域からより情報のあるサンプルを検索することを目的とした,新たな学習パラダイムである能動的選択予測を導入する。
論文 参考訳(メタデータ) (2023-04-07T23:51:07Z) - Adaptive Negative Evidential Deep Learning for Open-set Semi-supervised Learning [69.81438976273866]
オープンセット半教師付き学習(Open-set SSL)は、ラベル付きデータ(inliers)で観測されない新しいカテゴリ(outliers)を含むラベル付きデータとテストデータを含む、より実践的なシナリオである。
本研究では,様々な不確かさを定量化するための外乱検出器として顕在的深層学習(EDL)を導入し,自己学習と推論のための異なる不確実性指標を設計する。
Inlierとoutlierの両方を含むラベルなしデータセットに適合するように、新しい適応的負の最適化戦略を提案する。
論文 参考訳(メタデータ) (2023-03-21T09:07:15Z) - Calibrated Selective Classification [34.08454890436067]
そこで我々は,「不確か」な不確実性のある例を拒否する手法を提案する。
本稿では,選択的校正モデル学習のためのフレームワークを提案する。そこでは,任意のベースモデルの選択的校正誤差を改善するために,個別のセレクタネットワークを訓練する。
われわれは,複数画像分類と肺癌リスク評価におけるアプローチの実証的効果を実証した。
論文 参考訳(メタデータ) (2022-08-25T13:31:09Z) - Learning from Positive and Unlabeled Data with Augmented Classes [17.97372291914351]
Augmented Classes (PUAC) を用いたPU学習のための非バイアスリスク推定器を提案する。
提案手法は,最適解への収束を理論的に保証する推定誤差を導出する。
論文 参考訳(メタデータ) (2022-07-27T03:40:50Z) - Efficient and Differentiable Conformal Prediction with General Function
Classes [96.74055810115456]
本稿では,複数の学習可能なパラメータに対する共形予測の一般化を提案する。
本研究は, クラス内において, ほぼ有効な人口被覆率, ほぼ最適効率を実現していることを示す。
実験の結果,提案アルゴリズムは有効な予測セットを学習し,効率を著しく向上できることがわかった。
論文 参考訳(メタデータ) (2022-02-22T18:37:23Z) - Dash: Semi-Supervised Learning with Dynamic Thresholding [72.74339790209531]
我々は、ラベルのない例を使ってモデルをトレーニングする半教師付き学習(SSL)アプローチを提案する。
提案手法であるDashは、ラベルなしデータ選択の観点から適応性を享受する。
論文 参考訳(メタデータ) (2021-09-01T23:52:29Z) - Towards optimally abstaining from prediction [22.937799541125607]
機械学習のあらゆる領域に共通する課題は、トレーニングデータがテストデータのように分散されていないことだ。
一定のコストで予測を控えるモデルを考える。
我々は、Goldwasser、Kalais、Montasser(2020年)の最近の禁断アルゴリズムに基づいて、トランスダクティブバイナリ分類を行った。
論文 参考訳(メタデータ) (2021-05-28T21:44:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。