Copilot Evaluation Harness: Evaluating LLM-Guided Software Programming
- URL: http://arxiv.org/abs/2402.14261v1
- Date: Thu, 22 Feb 2024 03:51:34 GMT
- Title: Copilot Evaluation Harness: Evaluating LLM-Guided Software Programming
- Authors: Anisha Agarwal, Aaron Chan, Shubham Chandel, Jinu Jang, Shaun Miller,
Roshanak Zilouchian Moghaddam, Yevhen Mohylevskyy, Neel Sundaresan, Michele
Tufano
- Abstract summary: Large Language Models (LLMs) have become a focal point in modern software development.
LLMs offer the potential to significantly augment developer productivity by serving as intelligent, chat-driven programming assistants.
However, each system requires the LLM to be honed to its set of workspaces to ensure the best performance.
- Score: 12.355284125578342
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The integration of Large Language Models (LLMs) into Development Environments
(IDEs) has become a focal point in modern software development. LLMs such as
OpenAI GPT-3.5/4 and Code Llama offer the potential to significantly augment
developer productivity by serving as intelligent, chat-driven programming
assistants. However, utilizing LLMs out of the box is unlikely to be optimal
for any given scenario. Rather, each system requires the LLM to be honed to its
set of heuristics to ensure the best performance. In this paper, we introduce
the Copilot evaluation harness: a set of data and tools for evaluating
LLM-guided IDE interactions, covering various programming scenarios and
languages. We propose our metrics as a more robust and information-dense
evaluation than previous state of the art evaluation systems. We design and
compute both static and execution based success metrics for scenarios
encompassing a wide range of developer tasks, including code generation from
natural language (generate), documentation generation from code (doc), test
case generation (test), bug-fixing (fix), and workspace understanding and query
resolution (workspace). These success metrics are designed to evaluate the
performance of LLMs within a given IDE and its respective parameter space. Our
learnings from evaluating three common LLMs using these metrics can inform the
development and validation of future scenarios in LLM guided IDEs.
Related papers
- Studying and Benchmarking Large Language Models For Log Level Suggestion [49.176736212364496]
Large Language Models (LLMs) have become a focal point of research across various domains.
This paper investigates the impact of characteristics and learning paradigms on the performance of 12 open-source LLMs in log level suggestion.
arXiv Detail & Related papers (2024-10-11T03:52:17Z) - A Survey on Evaluating Large Language Models in Code Generation Tasks [30.256255254277914]
This paper provides a comprehensive review of the current methods and metrics used to evaluate the performance of Large Language Models (LLMs) in code generation tasks.
With the rapid growth in demand for automated software development, LLMs have demonstrated significant potential in the field of code generation.
arXiv Detail & Related papers (2024-08-29T12:56:06Z) - CIBench: Evaluating Your LLMs with a Code Interpreter Plugin [68.95137938214862]
We propose an interactive evaluation framework, named CIBench, to comprehensively assess LLMs' ability to utilize code interpreters for data science tasks.
The evaluation dataset is constructed using an LLM-human cooperative approach and simulates an authentic workflow by leveraging consecutive and interactive IPython sessions.
We conduct extensive experiments to analyze the ability of 24 LLMs on CIBench and provide valuable insights for future LLMs in code interpreter utilization.
arXiv Detail & Related papers (2024-07-15T07:43:55Z) - Towards more realistic evaluation of LLM-based code generation: an experimental study and beyond [36.1669124651617]
We conduct an empirical study to understand Large Language Models' code generation performance within settings that reflect the evolving nature of software development.
We find that previous evolving-ignored evaluation approaches lead to inflated performance of the LLMs, ranging from 10.0% to 61.1%.
arXiv Detail & Related papers (2024-06-11T03:19:18Z) - A Survey on Large Language Models for Code Generation [9.555952109820392]
Large Language Models (LLMs) have garnered remarkable advancements across diverse code-related tasks.
This survey aims to bridge the gap between academia and practical development by providing a comprehensive and up-to-date literature review.
arXiv Detail & Related papers (2024-06-01T17:48:15Z) - DevBench: A Comprehensive Benchmark for Software Development [72.24266814625685]
DevBench is a benchmark that evaluates large language models (LLMs) across various stages of the software development lifecycle.
Empirical studies show that current LLMs, including GPT-4-Turbo, fail to solve the challenges presented within DevBench.
Our findings offer actionable insights for the future development of LLMs toward real-world programming applications.
arXiv Detail & Related papers (2024-03-13T15:13:44Z) - PPTC-R benchmark: Towards Evaluating the Robustness of Large Language
Models for PowerPoint Task Completion [96.47420221442397]
We construct adversarial user instructions by attacking user instructions at sentence, semantic, and multi-language levels.
We test 3 closed-source and 4 open-source LLMs using a benchmark that incorporates robustness settings.
We find that GPT-4 exhibits the highest performance and strong robustness in our benchmark.
arXiv Detail & Related papers (2024-03-06T15:33:32Z) - DIALIGHT: Lightweight Multilingual Development and Evaluation of
Task-Oriented Dialogue Systems with Large Language Models [76.79929883963275]
DIALIGHT is a toolkit for developing and evaluating multilingual Task-Oriented Dialogue (ToD) systems.
It features a secure, user-friendly web interface for fine-grained human evaluation at both local utterance level and global dialogue level.
Our evaluations reveal that while PLM fine-tuning leads to higher accuracy and coherence, LLM-based systems excel in producing diverse and likeable responses.
arXiv Detail & Related papers (2024-01-04T11:27:48Z) - If LLM Is the Wizard, Then Code Is the Wand: A Survey on How Code
Empowers Large Language Models to Serve as Intelligent Agents [81.60906807941188]
Large language models (LLMs) are trained on a combination of natural language and formal language (code)
Code translates high-level goals into executable steps, featuring standard syntax, logical consistency, abstraction, and modularity.
arXiv Detail & Related papers (2024-01-01T16:51:20Z) - CodeApex: A Bilingual Programming Evaluation Benchmark for Large
Language Models [43.655927559990616]
We propose CodeApex, a benchmark dataset focusing on the programming comprehension, code generation, and code correction abilities of LLMs.
We evaluate 12 widely used LLMs, including both general-purpose and specialized models.
GPT-4 exhibits the best programming capabilities, achieving approximate accuracy of 69%, 54%, and 66% on the three tasks, respectively.
arXiv Detail & Related papers (2023-09-05T04:12:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.