ChaosBench: A Multi-Channel, Physics-Based Benchmark for Subseasonal-to-Seasonal Climate Prediction
- URL: http://arxiv.org/abs/2402.00712v4
- Date: Fri, 27 Sep 2024 16:27:55 GMT
- Title: ChaosBench: A Multi-Channel, Physics-Based Benchmark for Subseasonal-to-Seasonal Climate Prediction
- Authors: Juan Nathaniel, Yongquan Qu, Tung Nguyen, Sungduk Yu, Julius Busecke, Aditya Grover, Pierre Gentine,
- Abstract summary: We propose ChaosBench to extend predictability range of data-driven weather emulators to S2S timescale.
ChaosBench is comprised of variables beyond the typical surface-atmospheric ERA5 to also include ocean, ice, and land reanalysis products.
We evaluate on a diverse set of physics-based forecasts from four national weather agencies as baselines to our data-driven counterpart.
- Score: 23.075528272022282
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurate prediction of climate in the subseasonal-to-seasonal scale is crucial for disaster preparedness and robust decision making amidst climate change. Yet, forecasting beyond the weather timescale is challenging because it deals with problems other than initial condition, including boundary interaction, butterfly effect, and our inherent lack of physical understanding. At present, existing benchmarks tend to have shorter forecasting range of up-to 15 days, do not include a wide range of operational baselines, and lack physics-based constraints for explainability. Thus, we propose ChaosBench, a challenging benchmark to extend the predictability range of data-driven weather emulators to S2S timescale. First, ChaosBench is comprised of variables beyond the typical surface-atmospheric ERA5 to also include ocean, ice, and land reanalysis products that span over 45 years to allow for full Earth system emulation that respects boundary conditions. We also propose physics-based, in addition to deterministic and probabilistic metrics, to ensure a physically-consistent ensemble that accounts for butterfly effect. Furthermore, we evaluate on a diverse set of physics-based forecasts from four national weather agencies as baselines to our data-driven counterpart such as ViT/ClimaX, PanguWeather, GraphCast, and FourCastNetV2. Overall, we find methods originally developed for weather-scale applications fail on S2S task: their performance simply collapse to an unskilled climatology. Nonetheless, we outline and demonstrate several strategies that can extend the predictability range of existing weather emulators, including the use of ensembles, robust control of error propagation, and the use of physics-informed models. Our benchmark, datasets, and instructions are available at https://leap-stc.github.io/ChaosBench.
Related papers
- Super Resolution On Global Weather Forecasts [0.1747623282473278]
Group seeks to improve upon existing deep learning based forecasting methods by increasing spatial resolutions of global weather predictions.
Specifically, we are interested in performing super resolution (SR) on GraphCast temperature predictions by increasing the global precision from 1 degree of accuracy to 0.5 degrees.
arXiv Detail & Related papers (2024-09-17T19:07:13Z) - Generating Fine-Grained Causality in Climate Time Series Data for Forecasting and Anomaly Detection [67.40407388422514]
We design a conceptual fine-grained causal model named TBN Granger Causality.
Second, we propose an end-to-end deep generative model called TacSas, which discovers TBN Granger Causality in a generative manner.
We test TacSas on climate benchmark ERA5 for climate forecasting and the extreme weather benchmark of NOAA for extreme weather alerts.
arXiv Detail & Related papers (2024-08-08T06:47:21Z) - Lightning-Fast Convective Outlooks: Predicting Severe Convective Environments with Global AI-based Weather Models [0.08271752505511926]
Severe convective storms are among the most dangerous weather phenomena and accurate forecasts mitigate their impacts.
Recently released suite of AI-based weather models produces medium-range forecasts within seconds.
We assess the forecast skill of three top-performing AI-models for convective parameters against reanalysis and ECMWF's operational numerical weather prediction model IFS.
arXiv Detail & Related papers (2024-06-13T07:46:03Z) - ExtremeCast: Boosting Extreme Value Prediction for Global Weather Forecast [57.6987191099507]
We introduce Exloss, a novel loss function that performs asymmetric optimization and highlights extreme values to obtain accurate extreme weather forecast.
We also introduce ExBooster, which captures the uncertainty in prediction outcomes by employing multiple random samples.
Our solution can achieve state-of-the-art performance in extreme weather prediction, while maintaining the overall forecast accuracy comparable to the top medium-range forecast models.
arXiv Detail & Related papers (2024-02-02T10:34:13Z) - Efficient Subseasonal Weather Forecast using Teleconnection-informed
Transformers [29.33938664834226]
Subseasonal forecasting is pivotal for agriculture, water resource management, and early warning of disasters.
Recent advances in machine learning have revolutionized weather forecasting by achieving competitive predictive skills to numerical models.
However, training such foundation models requires thousands of GPU days, which causes substantial carbon emissions.
arXiv Detail & Related papers (2024-01-31T14:27:35Z) - Long-term drought prediction using deep neural networks based on geospatial weather data [75.38539438000072]
High-quality drought forecasting up to a year in advance is critical for agriculture planning and insurance.
We tackle drought data by introducing an end-to-end approach that adopts a systematic end-to-end approach.
Key findings are the exceptional performance of a Transformer model, EarthFormer, in making accurate short-term (up to six months) forecasts.
arXiv Detail & Related papers (2023-09-12T13:28:06Z) - W-MAE: Pre-trained weather model with masked autoencoder for
multi-variable weather forecasting [7.610811907813171]
We propose a Weather model with Masked AutoEncoder pre-training for weather forecasting.
W-MAE is pre-trained in a self-supervised manner to reconstruct spatial correlations within meteorological variables.
On the temporal scale, we fine-tune the pre-trained W-MAE to predict the future states of meteorological variables.
arXiv Detail & Related papers (2023-04-18T06:25:11Z) - ClimaX: A foundation model for weather and climate [51.208269971019504]
ClimaX is a deep learning model for weather and climate science.
It can be pre-trained with a self-supervised learning objective on climate datasets.
It can be fine-tuned to address a breadth of climate and weather tasks.
arXiv Detail & Related papers (2023-01-24T23:19:01Z) - Pangu-Weather: A 3D High-Resolution Model for Fast and Accurate Global
Weather Forecast [91.9372563527801]
We present Pangu-Weather, a deep learning based system for fast and accurate global weather forecast.
For the first time, an AI-based method outperforms state-of-the-art numerical weather prediction (NWP) methods in terms of accuracy.
Pangu-Weather supports a wide range of downstream forecast scenarios, including extreme weather forecast and large-member ensemble forecast in real-time.
arXiv Detail & Related papers (2022-11-03T17:19:43Z) - Smart Weather Forecasting Using Machine Learning:A Case Study in
Tennessee [2.9477900773805032]
We present a weather prediction technique that utilizes historical data from multiple weather stations to train simple machine learning models.
The accuracy of the models is good enough to be used alongside the current state-of-the-art techniques.
arXiv Detail & Related papers (2020-08-25T02:41:32Z) - A generative adversarial network approach to (ensemble) weather
prediction [91.3755431537592]
We use a conditional deep convolutional generative adversarial network to predict the geopotential height of the 500 hPa pressure level, the two-meter temperature and the total precipitation for the next 24 hours over Europe.
The proposed models are trained on 4 years of ERA5 reanalysis data from 2015-2018 with the goal to predict the associated meteorological fields in 2019.
arXiv Detail & Related papers (2020-06-13T20:53:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.