論文の概要: Resource-efficient loss-aware photonic graph state preparation using atomic emitters
- arxiv url: http://arxiv.org/abs/2402.00731v2
- Date: Mon, 02 Dec 2024 01:40:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-03 20:22:30.222678
- Title: Resource-efficient loss-aware photonic graph state preparation using atomic emitters
- Title(参考訳): 原子エミッタを用いた資源効率ロス対応フォトニックグラフ作成
- Authors: Eneet Kaur, Ashlesha Patil, Saikat Guha,
- Abstract要約: マルチキュービット交絡フォトニックグラフ状態は、全フォトニック量子コンピューティング、リピータ、ネットワークにとって重要な要素である。
本研究では,エミッタ数CNOTを最小化しつつ,エミッタ数をグラフ状態深さと交換できるアルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 0.7482855795615639
- License:
- Abstract: Multi-qubit entangled photonic graph states are an important ingredient for all-photonic quantum computing, repeaters and networking. Preparing them using probabilistic stitching of single photons using linear optics presents a formidable resource challenge due to multiplexing needs. Quantum emitters provide a viable solution to prepare photonic graph states as they enable deterministic production of photons entangled with emitter qubits, and deterministic two-qubit interactions among emitters. A handful of emitters often suffice to generate useful-size graph states that would otherwise require millions of emitters used as single photon sources, using the linear-optics method. Photon loss however impedes the emitter method due to a large circuit depth, and hence loss accrual on the photons of the graph state produced, given the typically large number of slow two-qubit CNOT gates between emitters. We propose an algorithm that can trade the number of emitters with the graph-state depth, while minimizing the number of emitter CNOTs. We apply our algorithm to generate a repeater graph state (RGS) for a new all-photonic repeater protocol, which achieves a far superior rate-distance tradeoff compared to using the least number of emitters needed to generate the RGS. Yet, it needs five orders of magnitude fewer emitters than the multiplexed linear-optics method -- with each emitter used as a photon source -- to achieve a desired rate-distance performance.
- Abstract(参考訳): マルチキュービット交絡フォトニックグラフ状態は、全フォトニック量子コンピューティング、リピータ、ネットワークにとって重要な要素である。
線形光学を用いた単一光子の確率的縫合による合成は、多重化の必要性から、資源難題となる。
量子エミッタは、エミッタ量子ビットに絡み合った光子の決定論的生成とエミッタ間の決定論的2量子ビット相互作用を可能にするため、フォトニックグラフ状態を作成するための実行可能なソリューションを提供する。
一握りのエミッタは有用なグラフ状態を生成するのに十分であり、それ以外は線形光学法を用いて、単一の光子源として使われる数百万のエミッタを必要とする。
しかし、光子損失は、大きな回路深さのためにエミッタ法を阻害し、そのため、エミッタ間の2量子CNOTゲートが典型的には多く存在するため、生成されたグラフ状態の光子に損失が蓄積される。
本研究では,エミッタ数CNOTを最小化しつつ,エミッタ数をグラフ状態深さと交換できるアルゴリズムを提案する。
我々は,RGSを生成するのに必要なエミッタの最小数よりもはるかに優れたレート依存性のトレードオフを実現するため,新しい全フォトニックリピータプロトコルのリピータグラフ状態(RGS)を生成するアルゴリズムを適用した。
しかし、光子源として各エミッタを使用する多重線形光学法よりも5桁少ないエミッタを必要とし、所望のレート距離性能を達成する。
関連論文リスト
- Passive photonic CZ gate with two-level emitters in chiral multi-mode waveguide QED [41.94295877935867]
共伝播光子間の受動条件ゲートを2レベルエミッタアレイで設計する。
鍵となる資源は、エミッタアレイの2つの導波路モードへのキラルカップリングによって誘導される効果的な光子-光子相互作用を利用することである。
我々は、この非線形位相シフトを利用して、異なる量子ビット符号化における条件付き決定性フォトニックゲートを設計する方法を示す。
論文 参考訳(メタデータ) (2024-07-08T18:00:25Z) - A complete scheme for atom-mediated deterministic photonic graph state generation [0.0]
高絡み合い多光子グラフ状態は、フォトニック量子計算と通信において重要な資源である。
単一原子をベースとしたフォトニック操作を利用すれば、フォトニックグラフ状態の決定論的生成が可能になることを示す。
論文 参考訳(メタデータ) (2024-06-02T20:33:40Z) - Heralded photonic graph states with inefficient quantum emitters [2.612403257963011]
フォトニックグラフ状態を生成するための量子エミッタベースのスキームは、有望でリソース効率の良い方法論を提供する。
本稿では, 最先端エミッタからのフォトニックコレクションと互換性のある, フォトニックグラフ状態を生成する方法を提案する。
論文 参考訳(メタデータ) (2024-05-22T00:24:01Z) - Efficient qudit based scheme for photonic quantum computing [0.0]
本研究は,d>2光モードにおける単一光子の光子数状態によって定義される量子量について検討する。
線形光学と光子数分解検出器を用いて局所最適非決定性多量子ゲートを構築する方法を示す。
我々は、quditクラスタ状態は、光学モードを少なくし、類似の計算能力を持つqubitクラスタ状態よりも、絡み合った光子が少なく符号化されていることを発見した。
論文 参考訳(メタデータ) (2023-02-14T21:41:45Z) - On-chip quantum information processing with distinguishable photons [55.41644538483948]
多光子干渉は光量子技術の中心にある。
そこで本研究では,共振器型集積光子源に必要なスケールで変形した光子を干渉させるのに十分な時間分解能で検出を実装できることを実験的に実証した。
ボソンサンプリング実験において,非イデアル光子の時間分解検出がエンタングル操作の忠実度を向上し,計算複雑性の低減を図ることができることを示す。
論文 参考訳(メタデータ) (2022-10-14T18:16:49Z) - Near-deterministic hybrid generation of arbitrary photonic graph states
using a single quantum emitter and linear optics [0.0]
我々は、現在の量子エミッタ機能を用いて、グラフ状態を生成するためのほぼ決定論的解を導入する。
本研究は,資源効率の高い量子情報処理の実用化に向けての道を開くものである。
論文 参考訳(メタデータ) (2022-05-19T17:59:59Z) - All-optical graph representation learning using integrated diffractive
photonic computing units [51.15389025760809]
フォトニックニューラルネットワークは、電子の代わりに光子を用いて脳にインスパイアされた計算を行う。
我々は、DGNN(diffractive graph neural network)と呼ばれる全光グラフ表現学習アーキテクチャを提案する。
ベンチマークデータベースを用いたノードおよびグラフレベルの分類タスクにおけるDGNN抽出機能の利用を実演し、優れた性能を実現する。
論文 参考訳(メタデータ) (2022-04-23T02:29:48Z) - Photonic resource state generation from a minimal number of quantum
emitters [0.0]
多光子絡み合ったグラフ状態は、量子通信ネットワーク、分散量子コンピューティング、センシングの基本的なリソースである。
ここでは、所望の多光子グラフ状態が与えられた場合、最小数の量子エミッタとそれを生成可能な正確な演算シーケンスを決定するアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-08-27T19:16:56Z) - Rapid characterisation of linear-optical networks via PhaseLift [51.03305009278831]
集積フォトニクスは優れた位相安定性を提供し、半導体産業によって提供される大規模な製造性に依存することができる。
このような光回路に基づく新しいデバイスは、機械学習アプリケーションにおいて高速でエネルギー効率の高い計算を約束する。
線形光ネットワークの転送行列を再構成する新しい手法を提案する。
論文 参考訳(メタデータ) (2020-10-01T16:04:22Z) - A bright and fast source of coherent single photons [46.25143811066789]
単一光子源はデバイス非依存の量子通信において重要な技術である。
特に高効率な単一光子源について報告する。
論文 参考訳(メタデータ) (2020-07-24T17:08:46Z) - Near-ideal spontaneous photon sources in silicon quantum photonics [55.41644538483948]
集積フォトニクスは量子情報処理のための堅牢なプラットフォームである。
非常に区別がつかず純粋な単一の光子の源は、ほぼ決定的か高い効率で隠蔽されている。
ここでは、これらの要件を同時に満たすオンチップ光子源を実証する。
論文 参考訳(メタデータ) (2020-05-19T16:46:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。