論文の概要: Fast Exact Unlearning for In-Context Learning Data for LLMs
- arxiv url: http://arxiv.org/abs/2402.00751v2
- Date: Mon, 29 Sep 2025 20:10:01 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-01 17:09:03.804176
- Title: Fast Exact Unlearning for In-Context Learning Data for LLMs
- Title(参考訳): LLMのための文脈内学習データのための高速エクササイズアンラーニング
- Authors: Andrei I. Muresanu, Anvith Thudi, Michael R. Zhang, Nicolas Papernot,
- Abstract要約: 大規模言語モデルでは「微調整データ」を効率的に解き放つことができることを示す。
正確な文脈内学習は量子化k-meansで行うことができ、効果的に一定時間非学習操作ができることを示す。
- 参考スコア(独自算出の注目度): 30.06631665962119
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Modern machine learning models are expensive to train, and there is a growing concern about the challenge of retroactively removing specific training data. Achieving exact unlearning in deep learning pipelines--producing models as if certain data had never been included in training--remains an open problem. In this paper, we revisit exact unlearning in deep learning and show that for large language models (LLMs) we can efficiently exactly unlearn "fine-tuning data" (the data used to adapt a pre-trained model). This follows from two observations. First, we can use in-context learning to adapt the LLM to the fine-tuning dataset instead of SGD based algorithms. Second, we show that accurate in-context learning can be done with quantized k-means, which allows for effectively constant time unlearning operations. Our evaluation shows that this unlearning recipe has similar performance to fine-tuning alternatives, but vastly reduces the unlearning costs. Our study also highlights the need for new measures of unlearning cost when adapting the learning algorithm to have faster unlearn operations.
- Abstract(参考訳): 現代の機械学習モデルはトレーニングに費用がかかるため、特定のトレーニングデータを遡及的に削除するという課題に対する懸念が高まっている。
ディープラーニングパイプラインの正確なアンラーニング — トレーニングに特定のデータが含まれていないかのようにモデルを生成する — は、オープンな問題として残る。
本稿では、ディープラーニングにおける正確な未学習を再考し、大規模言語モデル(LLM)では、学習前のモデルに適応するために使用されるデータ)を効率的に学習できることを示す。
これは2つの観測から導かれる。
まず、文脈内学習を用いて、SGDベースのアルゴリズムの代わりにLLMを微調整データセットに適応させる。
第二に、正確な文脈内学習は量子化k平均で行うことができ、効果的に一定時間非学習操作ができることを示す。
評価の結果、この未学習のレシピは微調整の代替品と同等の性能を示すが、未学習のコストを大幅に削減することがわかった。
また,本研究では,学習アルゴリズムを高速な学習操作に適応させる際に,学習コストの新たな尺度の必要性を強調した。
関連論文リスト
- SPaRFT: Self-Paced Reinforcement Fine-Tuning for Large Language Models [51.74498855100541]
大規模言語モデル(LLM)は、強化学習(RL)による微調整時に強い推論能力を示す。
トレーニング対象のモデルの性能に基づいて,効率的な学習を可能にする自己評価学習フレームワークである textbfSPaRFT を提案する。
論文 参考訳(メタデータ) (2025-08-07T03:50:48Z) - Efficient Machine Unlearning via Influence Approximation [75.31015485113993]
インフルエンサーベースのアンラーニングは、個別のトレーニングサンプルがモデルパラメータに与える影響を再トレーニングせずに推定する顕著なアプローチとして現れてきた。
本稿では,暗記(増分学習)と忘れ(未学習)の理論的関連性を確立する。
本稿では、インフルエンス近似アンラーニングアルゴリズムを導入し、インクリメンタルな視点から効率的なマシンアンラーニングを行う。
論文 参考訳(メタデータ) (2025-07-31T05:34:27Z) - Large Language Models as Attribution Regularizers for Efficient Model Training [0.0]
大規模言語モデル(LLM)は、様々な領域で顕著なパフォーマンスを示している。
我々は,LLM生成したグローバルタスク特徴属性を,より小さなネットワークのトレーニングプロセスに組み込む方法を提案する。
我々のアプローチは、数ショットの学習シナリオにおいて優れたパフォーマンスをもたらす。
論文 参考訳(メタデータ) (2025-02-27T16:55:18Z) - Provable unlearning in topic modeling and downstream tasks [36.571324268874264]
アンラーニングの保証は、しばしば教師付き学習設定に限られる。
我々は、事前学習と微調整のパラダイムにおいて、初となるアンラーニングの理論的保証を提供する。
我々は、特定のタスクに微調整されたモデルから事前学習データを容易に解放できることを示し、ベースモデルを変更することなく、このデータを解放できることを示した。
論文 参考訳(メタデータ) (2024-11-19T16:04:31Z) - Attribute-to-Delete: Machine Unlearning via Datamodel Matching [65.13151619119782]
機械学習 -- 事前訓練された機械学習モデルで、小さな"ターゲットセット"トレーニングデータを効率的に削除する -- は、最近関心を集めている。
最近の研究では、機械学習技術はこのような困難な環境では耐えられないことが示されている。
論文 参考訳(メタデータ) (2024-10-30T17:20:10Z) - Forewarned is Forearmed: Leveraging LLMs for Data Synthesis through Failure-Inducing Exploration [90.41908331897639]
大規模言語モデル(LLM)は、多種多様な高品質なタスク特化データのトレーニングの恩恵を受けている。
本稿では,効果的なトレーニングサンプルを自動生成する新しい手法であるReverseGenを提案する。
論文 参考訳(メタデータ) (2024-10-22T06:43:28Z) - Accelerating Large Language Model Pretraining via LFR Pedagogy: Learn, Focus, and Review [50.78587571704713]
Learn-Focus-Review(LFR)は、モデルの学習進捗に適応する動的トレーニングアプローチである。
LFRは、データブロック(トークンのシーケンス)にわたるモデルの学習パフォーマンスを追跡し、データセットの困難な領域を再検討する。
フルデータセットでトレーニングされたベースラインモデルと比較して、LFRは一貫して低いパープレキシティと高い精度を達成した。
論文 参考訳(メタデータ) (2024-09-10T00:59:18Z) - Learn while Unlearn: An Iterative Unlearning Framework for Generative Language Models [52.03511469562013]
3つのコアコンポーネントで構成されるICU(Iterative Contrastive Unlearning)フレームワークを紹介する。
知識未学習誘導モジュールは、未学習の損失を使用して、特定の知識を除去するためにターゲットとする。
Contrastive Learning Enhancementモジュールは、純粋な未学習の目標に対してモデルの表現力を保持する。
イテレーティブ・アンラーニング・リファインメントモジュールは、進行中の評価と更新を通じて、アンラーニングプロセスを動的に調整する。
論文 参考訳(メタデータ) (2024-07-25T07:09:35Z) - Unlearning with Control: Assessing Real-world Utility for Large Language Model Unlearning [97.2995389188179]
最近の研究は、勾配上昇(GA)を通した大規模言語モデル(LLM)の未学習にアプローチし始めている。
その単純さと効率性にもかかわらず、我々はGAベースの手法が過剰な未学習の傾向に直面することを示唆している。
過剰な未学習の度合いを制御できるいくつかの制御手法を提案する。
論文 参考訳(メタデータ) (2024-06-13T14:41:00Z) - Exploring intra-task relations to improve meta-learning algorithms [1.223779595809275]
我々は,タスクの効果的なミニバッチによるトレーニング安定性向上のために,タスク関係の外部知識を活用することを目的としている。
ミニバッチでタスクの多様なセットを選択すると、完全な勾配がより良く見積もられるため、トレーニングにおけるノイズの低減につながる、という仮説を立てる。
論文 参考訳(メタデータ) (2023-12-27T15:33:52Z) - Learn to Unlearn for Deep Neural Networks: Minimizing Unlearning
Interference with Gradient Projection [56.292071534857946]
最近のデータプライバシ法は、機械学習への関心を喚起している。
課題は、残りのデータセットに関する知識を変更することなく、忘れたデータに関する情報を捨てることである。
我々は、プロジェクテッド・グラディエント・アンラーニング(PGU)という、プロジェクテッド・グラディエント・ベースの学習手法を採用する。
トレーニングデータセットがもはやアクセスできない場合でも、スクラッチからスクラッチで再トレーニングされたモデルと同じような振る舞いをするモデルを、我々のアンラーニング手法が生成できることを実証するための実証的な証拠を提供する。
論文 参考訳(メタデータ) (2023-12-07T07:17:24Z) - Unlearn What You Want to Forget: Efficient Unlearning for LLMs [92.51670143929056]
大規模言語モデル(LLM)は、幅広いテキストデータを事前学習し記憶することで大きな進歩を遂げた。
このプロセスはプライバシー問題やデータ保護規則違反に悩まされる可能性がある。
データ削除後のモデル全体を再トレーニングすることなく、LLMを効率的に更新できる効率的なアンラーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2023-10-31T03:35:59Z) - In-Context Unlearning: Language Models as Few Shot Unlearners [27.962361828354716]
我々は,Large Language Models (LLMs) のための新しいアンラーニング手法を提案する。
このメソッドは、モデルパラメータを更新することなく、コンテキスト内で特定の種類の入力を提供することで、モデルからインスタンスを解放する。
実験の結果、文脈内アンラーニングは、モデルパラメータへのアクセスを必要とする他の最先端の手法よりも優れていることが示された。
論文 参考訳(メタデータ) (2023-10-11T15:19:31Z) - Model Sparsity Can Simplify Machine Unlearning [33.18951938708467]
最近のデータ規制要件に応えて、マシン・アンラーニング(MU)が重要なプロセスとして登場した。
本研究は,ウェイトプルーニングによるモデルスペーシフィケーションという,新しいモデルベース視点を紹介する。
理論と実践の両方において、モデルスパーシティは、近似アンラーナーのマルチ基準アンラーニング性能を高めることができることを示す。
論文 参考訳(メタデータ) (2023-04-11T02:12:02Z) - On the Necessity of Auditable Algorithmic Definitions for Machine
Unlearning [13.149070833843133]
機械学習、すなわち、トレーニングデータのいくつかを忘れるモデルを持つことは、プライバシー法が忘れられる権利の変種を促進するにつれ、ますます重要になっている。
まず、ほぼ未学習のモデルが正確に訓練されたモデルに近いことを証明しようとする、近似的未学習の定義は、異なるデータセットを用いて同じモデルを得ることができるため、正しくないことを示す。
そして、正確なアンラーニングアプローチに目を向け、アンラーニングのクレームの検証方法を尋ねます。
論文 参考訳(メタデータ) (2021-10-22T16:16:56Z) - Meta-Reinforcement Learning Robust to Distributional Shift via Model
Identification and Experience Relabeling [126.69933134648541]
本稿では,テスト時にアウト・オブ・ディストリビューション・タスクに直面した場合に,効率よく外挿できるメタ強化学習アルゴリズムを提案する。
我々の手法は単純な洞察に基づいており、動的モデルが非政治データに効率的かつ一貫して適応可能であることを認識している。
論文 参考訳(メタデータ) (2020-06-12T13:34:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。