論文の概要: Tiny Titans: Can Smaller Large Language Models Punch Above Their Weight in the Real World for Meeting Summarization?
- arxiv url: http://arxiv.org/abs/2402.00841v2
- Date: Mon, 15 Apr 2024 17:56:58 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-17 23:15:44.735227
- Title: Tiny Titans: Can Smaller Large Language Models Punch Above Their Weight in the Real World for Meeting Summarization?
- Title(参考訳): Tiny Titans: より小さな言語モデルでは、要約をするために、現実の世界でその重みを突くことができるか?
- Authors: Xue-Yong Fu, Md Tahmid Rahman Laskar, Elena Khasanova, Cheng Chen, Shashi Bhushan TN,
- Abstract要約: 大規模言語モデル(LLM)は、タスク固有のデータセットを明示的に微調整することなく、幅広いタスクを解決できる印象的な機能を示している。
本研究では,LLM の小型化が,LLM の現実的利用に伴う大きなコストに対処するために,比較的大型の LLMs2 の代替となるかを検討する。
- 参考スコア(独自算出の注目度): 7.674972936853123
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Large Language Models (LLMs) have demonstrated impressive capabilities to solve a wide range of tasks without being explicitly fine-tuned on task-specific datasets. However, deploying LLMs in the real world is not trivial, as it requires substantial computing resources. In this paper, we investigate whether smaller, compact LLMs are a good alternative to the comparatively Larger LLMs2 to address significant costs associated with utilizing LLMs in the real world. In this regard, we study the meeting summarization task in a real-world industrial environment and conduct extensive experiments by comparing the performance of fine-tuned compact LLMs (e.g., FLAN-T5, TinyLLaMA, LiteLLaMA) with zero-shot larger LLMs (e.g., LLaMA-2, GPT-3.5, PaLM-2). We observe that most smaller LLMs, even after fine-tuning, fail to outperform larger zero-shot LLMs in meeting summarization datasets. However, a notable exception is FLAN-T5 (780M parameters), which performs on par or even better than many zero-shot Larger LLMs (from 7B to above 70B parameters), while being significantly smaller. This makes compact LLMs like FLAN-T5 a suitable cost-efficient solution for real-world industrial deployment.
- Abstract(参考訳): 大規模言語モデル(LLM)は、タスク固有のデータセットを明示的に微調整することなく、幅広いタスクを解決できる印象的な機能を示している。
しかし、LLMを現実世界に展開するのは、かなりの計算資源を必要とするため、簡単ではない。
本稿では,LLM の小型化が,LLM の現実的利用に伴う大きなコストに対処するために,比較的大型の LLMs2 の代替となるかを検討する。
本研究では, 実世界の産業環境における会議要約タスクについて検討し, 微調整小型LCM(例えば, FLAN-T5, TinyLLaMA, LiteLLaMA)とゼロショット大型LCM(例えば, LLaMA-2, GPT-3.5, PaLM-2)の性能を比較検討した。
微調整後であっても、ほとんどの小さなLLMは、要約データセットを満たす際に、より大きなゼロショットLLMを上回りません。
しかし、注目すべき例外はFLAN-T5 (780Mパラメータ) であり、これは多くのゼロショットLLM (7Bから70Bパラメータ以上) よりも同等かそれ以上に動作する。
これにより、FLAN-T5のようなコンパクトなLCMが、現実の産業展開に適したコスト効率のソリューションとなる。
関連論文リスト
- WALL-E: World Alignment by Rule Learning Improves World Model-based LLM Agents [55.64361927346957]
大規模言語モデル(LLM)による規則の勾配なし学習のためのニューロシンボリックアプローチを提案する。
我々のLLMエージェントWALL-Eはモデル予測制御(MPC)上に構築されている
MinecraftとALFWorldにおけるオープンワールドの課題について、WALL-Eは既存の方法よりも高い成功率を達成する。
論文 参考訳(メタデータ) (2024-10-09T23:37:36Z) - Enhancing Discriminative Tasks by Guiding the Pre-trained Language Model with Large Language Model's Experience [4.814313782484443]
大規模言語モデル (LLM) と事前訓練型言語モデル (LM) は多くのソフトウェア工学のタスクにおいて驚くべき成功を収めた。
我々は、LLMを用いてドメイン固有のデータを生成し、目標タスクにおける事前学習されたLMの性能を向上させる。
論文 参考訳(メタデータ) (2024-08-16T06:37:59Z) - Delta-CoMe: Training-Free Delta-Compression with Mixed-Precision for Large Language Models [79.46938238953916]
多様なアプリケーションへの微調整された大規模言語モデル(LLM)は、複雑な要求を満たすために不可欠である。
近年の研究では、微調整LDMをベースモデルと対応するデルタウェイトに分解し、低ランクまたは低ビットのアプローチで圧縮してコストを削減することが示唆されている。
本研究では,従来の低ランク圧縮法と低ビット圧縮法がタスク固有の微調整LDMのモデル性能を著しく損なうことを観察する。
論文 参考訳(メタデータ) (2024-06-13T07:57:27Z) - LLM2LLM: Boosting LLMs with Novel Iterative Data Enhancement [79.31084387589968]
事前訓練された大規模言語モデル(LLM)は、現在、自然言語処理タスクの大部分を解決するための最先端技術である。
LLM2LLMは、教師のLLMを使って小さなシードデータセットを強化するデータ拡張戦略である。
GSM8Kデータセットでは最大24.2%、CaseHOLDでは32.6%、SNIPSでは32.0%、TRECでは52.6%、SST-2では39.8%の改善が達成された。
論文 参考訳(メタデータ) (2024-03-22T08:57:07Z) - Not All Layers of LLMs Are Necessary During Inference [68.88671495401483]
いくつかのタスクにおいて、Large Language Modelsはいくつかの中間層での最終的な出力に匹敵する結果が得られることを示す。
本稿では,入力インスタンスの推論処理を適応的に終了するアルゴリズムAdaInferを提案する。
論文 参考訳(メタデータ) (2024-03-04T16:23:58Z) - LLM-Oriented Retrieval Tuner [25.563739811422874]
Dense Retrieval(DR)は現在、LLM(Large Language Models)の記憶能力を高めるための有望なツールと考えられている。
本稿では,LLM から DR 容量を分離する効率的な LLM-Oriented Retrieval Tuner,すなわち LMORT を提案する。
提案手法は,強力なDRモデルと比較して,競争力のあるゼロショット検索性能を実現することができる。
論文 参考訳(メタデータ) (2024-03-04T12:50:25Z) - Dynamic Sparse No Training: Training-Free Fine-tuning for Sparse LLMs [67.38165028487242]
そこで我々は,DSnoT(Dynamic Sparse No Training, 動的スパース・ノー・トレーニング)を導入した。
動的スパーストレーニングにインスパイアされたDSnoTは、密度とスパースLLM間の再構成誤差を最小限に抑える。
本稿は, LLMのスパースを, 効率的なトレーニング自由な方法で微調整し, 新たな会場をオープンして, LLMの空間性に大きな可能性を拡大する方法について, 新たな知見を提供する。
論文 参考訳(メタデータ) (2023-10-13T07:38:52Z) - Small Language Models Improve Giants by Rewriting Their Outputs [18.025736098795296]
本研究では,大規模言語モデル(LLM)の性能向上にトレーニングデータを活用するという課題に,微調整なしで対処する。
我々は、数発のプロンプトによってLSMから候補のプールを作成し、コンパクトモデルLM-corrector(LMCor)を用いて、これらの候補をマージして拡張出力を生成するように特別に訓練した。
4つの自然言語生成タスクの実験により、小さな LMCor モデル (250M) でさえ、LLM (62B) の少数ショット性能を大幅に改善し、マッチングや標準微調整よりも優れることを示した。
論文 参考訳(メタデータ) (2023-05-22T22:07:50Z) - LLM-Pruner: On the Structural Pruning of Large Language Models [65.02607075556742]
大規模言語モデル(LLM)は、言語理解と生成において顕著な能力を示している。
タスク非依存であり、元のトレーニングデータセットへの依存を最小限に抑えるという2つの制約の範囲内でLLMの圧縮に取り組む。
LLM-Prunerという名前のこの手法は、非臨界結合構造を選択的に除去する構造プルーニングを採用する。
論文 参考訳(メタデータ) (2023-05-19T12:10:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。