論文の概要: Generalizing GradCAM for Embedding Networks
- arxiv url: http://arxiv.org/abs/2402.00909v1
- Date: Thu, 1 Feb 2024 04:58:06 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-05 18:16:56.635013
- Title: Generalizing GradCAM for Embedding Networks
- Title(参考訳): 埋め込みネットワークのためのGradCAMの一般化
- Authors: Mudit Bachhawat
- Abstract要約: 本稿では,組込みネットワークのためのGrad-CAMを一般化した EmbeddingCAM を提案する。
提案手法の有効性をCUB-200-2011データセットに示すとともに,そのデータセットに対する定量的,定性的な分析結果を示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Visualizing CNN is an important part in building trust and explaining model's
prediction. Methods like CAM and GradCAM have been really successful in
localizing area of the image responsible for the output but are only limited to
classification models. In this paper, we present a new method EmbeddingCAM,
which generalizes the Grad-CAM for embedding networks. We show that for
classification networks, EmbeddingCAM reduces to GradCAM. We show the
effectiveness of our method on CUB-200-2011 dataset and also present
quantitative and qualitative analysis on the dataset.
- Abstract(参考訳): CNNの可視化は、信頼の構築とモデルの予測を説明する上で重要な部分である。
CAMやGradCAMのような手法は、出力に責任のある画像の領域のローカライズに成功しているが、分類モデルに限られている。
本稿では,組込みネットワークのためのGrad-CAMを一般化した EmbeddingCAM を提案する。
分類ネットワークでは, EmbeddingCAM が GradCAM に還元されることを示す。
本手法は,cub-200-2011データセット上での有効性を示すとともに,定量的・定性的な解析を行う。
関連論文リスト
- FM-G-CAM: A Holistic Approach for Explainable AI in Computer Vision [0.6215404942415159]
我々は,コンピュータビジョンモデル,特に畳み込みニューラルネットワーク(CNN)に基づくモデルの予測を理解する必要性を強調した。
既存のCNN予測法は、主にグラディエント重み付きクラスアクティベーションマップ(Grad-CAM)に基づいており、単一のターゲットクラスのみに焦点を当てている。
本稿では,複数の上位予測クラスを考慮したFused Multi-class Gradient-weighted Class Activation Map (FM-G-CAM)を提案する。
論文 参考訳(メタデータ) (2023-12-10T19:33:40Z) - BroadCAM: Outcome-agnostic Class Activation Mapping for Small-scale
Weakly Supervised Applications [69.22739434619531]
そこで我々はBroadCAMと呼ばれる結果に依存しないCAMアプローチを提案する。
VOC2012でBroadCAM、WSSSでBCSS-WSSS、WSOLでOpenImages30kを評価することで、BroadCAMは優れたパフォーマンスを示している。
論文 参考訳(メタデータ) (2023-09-07T06:45:43Z) - Attention-based Class Activation Diffusion for Weakly-Supervised
Semantic Segmentation [98.306533433627]
クラスアクティベーションマップの抽出(CAM)は、弱教師付きセマンティックセグメンテーション(WSSS)の重要なステップである
本稿では,CAMとアテンション行列を確率的拡散法で結合する新しい手法を提案し,それをAD-CAMとダブする。
擬似ラベルとしてのAD-CAMは、最先端のCAMよりも強力なWSSSモデルが得られることを示す実験である。
論文 参考訳(メタデータ) (2022-11-20T10:06:32Z) - Recipro-CAM: Gradient-free reciprocal class activation map [0.0]
本稿では,アクティベーションマップとネットワーク出力の相関性を利用するために,軽量なアーキテクチャと勾配のないReciprocal CAM(Recipro-CAM)を提案する。
提案手法により,Score-CAMと比較してResNetファミリーの1:78~3:72%のゲインを得た。
さらに、Recipro-CAMはGrad-CAMと似たサリエンシマップ生成率を示し、Score-CAMの約148倍高速である。
論文 参考訳(メタデータ) (2022-09-28T13:15:03Z) - Class Re-Activation Maps for Weakly-Supervised Semantic Segmentation [88.55040177178442]
クラスアクティベーションマップ(CAM)は、セマンティックセグメンテーションのための疑似マスクを生成する最も標準的なステップである。
しかし、不満足な擬似マスクのくちばしは、CAMで広く使われているバイナリクロスエントロピー損失(BCE)である。
ソフトマックスクロスエントロピー損失(SCE)を用いて収束CAMをBCEで再活性化する。
PASCAL VOC と MSCOCO の評価は、ReCAM が高品質なマスクを生成するだけでなく、オーバーヘッドの少ない任意の CAM 版でプラグイン・アンド・プレイをサポートすることを示している。
論文 参考訳(メタデータ) (2022-03-02T09:14:58Z) - Calibrating Class Activation Maps for Long-Tailed Visual Recognition [60.77124328049557]
本稿では,CNNの長期分布からネットワーク学習を改善するための2つの効果的な修正を提案する。
まず,ネットワーク分類器の学習と予測を改善するために,CAMC (Class Activation Map) モジュールを提案する。
第2に,長期化問題における表現学習における正規化分類器の利用について検討する。
論文 参考訳(メタデータ) (2021-08-29T05:45:03Z) - Use HiResCAM instead of Grad-CAM for faithful explanations of
convolutional neural networks [89.56292219019163]
説明法は意味のある概念を学習し、素早い相関を悪用しないモデルの開発を容易にする。
一般的なニューラルネットワーク説明法であるGrad-CAMの、未認識の制限について説明する。
本稿では,モデルが各予測に使用する場所のみをハイライトするクラス固有の説明手法であるHiResCAMを提案する。
論文 参考訳(メタデータ) (2020-11-17T19:26:14Z) - Axiom-based Grad-CAM: Towards Accurate Visualization and Explanation of
CNNs [29.731732363623713]
クラスアクティベーションマッピング(CAM)手法は,CNNの決定領域と画像領域の関連性を明らかにするために提案されている。
本稿では,CAM手法の可視化パラダイムに2つの公理(保存と感性)を導入する。
これらの公理をできるだけ満たすために、専用公理系Grad-CAM (XGrad-CAM) が提案されている。
論文 参考訳(メタデータ) (2020-08-05T18:42:33Z) - Eigen-CAM: Class Activation Map using Principal Components [1.2691047660244335]
この論文は、解釈可能で堅牢で透明なモデルに対する需要の増加に対応するために、従来の考え方に基づいている。
提案したEigen-CAMは、畳み込み層から学習した特徴/表現の基本的なコンポーネントを計算し、視覚化する。
論文 参考訳(メタデータ) (2020-08-01T17:14:13Z) - Explanation-Guided Training for Cross-Domain Few-Shot Classification [96.12873073444091]
クロスドメイン・ショット分類タスク(CD-FSC)は、データセットで表されるドメインをまたいで一般化する要件と、少数ショット分類を組み合わせたものである。
既存のFSCモデルに対する新しいトレーニング手法を提案する。
説明誘導学習はモデル一般化を効果的に改善することを示す。
論文 参考訳(メタデータ) (2020-07-17T07:28:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。