FuseFormer: A Transformer for Visual and Thermal Image Fusion
- URL: http://arxiv.org/abs/2402.00971v2
- Date: Wed, 24 Apr 2024 13:01:22 GMT
- Title: FuseFormer: A Transformer for Visual and Thermal Image Fusion
- Authors: Aytekin Erdogan, Erdem Akagündüz,
- Abstract summary: We propose a novel methodology for the image fusion problem that mitigates the limitations associated with using classical evaluation metrics as loss functions.
Our approach integrates a transformer-based multi-scale fusion strategy that adeptly addresses local and global context information.
Our proposed method, along with the novel loss function definition, demonstrates superior performance compared to other competitive fusion algorithms.
- Score: 3.6064695344878093
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Due to the lack of a definitive ground truth for the image fusion problem, the loss functions are structured based on evaluation metrics, such as the structural similarity index measure (SSIM). However, in doing so, a bias is introduced toward the SSIM and, consequently, the input visual band image. The objective of this study is to propose a novel methodology for the image fusion problem that mitigates the limitations associated with using classical evaluation metrics as loss functions. Our approach integrates a transformer-based multi-scale fusion strategy that adeptly addresses local and global context information. This integration not only refines the individual components of the image fusion process but also significantly enhances the overall efficacy of the method. Our proposed method follows a two-stage training approach, where an auto-encoder is initially trained to extract deep features at multiple scales in the first stage. For the second stage, we integrate our fusion block and change the loss function as mentioned. The multi-scale features are fused using a combination of Convolutional Neural Networks (CNNs) and Transformers. The CNNs are utilized to capture local features, while the Transformer handles the integration of general context features. Through extensive experiments on various benchmark datasets, our proposed method, along with the novel loss function definition, demonstrates superior performance compared to other competitive fusion algorithms.
Related papers
- Affine-based Deformable Attention and Selective Fusion for Semi-dense Matching [30.272791354494373]
We introduce affine-based local attention to model cross-view deformations.
We also present selective fusion to merge local and global messages from cross attention.
arXiv Detail & Related papers (2024-05-22T17:57:37Z) - CT-MVSNet: Efficient Multi-View Stereo with Cross-scale Transformer [8.962657021133925]
Cross-scale transformer (CT) processes feature representations at different stages without additional computation.
We introduce an adaptive matching-aware transformer (AMT) that employs different interactive attention combinations at multiple scales.
We also present a dual-feature guided aggregation (DFGA) that embeds the coarse global semantic information into the finer cost volume construction.
arXiv Detail & Related papers (2023-12-14T01:33:18Z) - Mutual-Guided Dynamic Network for Image Fusion [51.615598671899335]
We propose a novel mutual-guided dynamic network (MGDN) for image fusion, which allows for effective information utilization across different locations and inputs.
Experimental results on five benchmark datasets demonstrate that our proposed method outperforms existing methods on four image fusion tasks.
arXiv Detail & Related papers (2023-08-24T03:50:37Z) - A Task-guided, Implicitly-searched and Meta-initialized Deep Model for
Image Fusion [69.10255211811007]
We present a Task-guided, Implicit-searched and Meta- generalizationd (TIM) deep model to address the image fusion problem in a challenging real-world scenario.
Specifically, we propose a constrained strategy to incorporate information from downstream tasks to guide the unsupervised learning process of image fusion.
Within this framework, we then design an implicit search scheme to automatically discover compact architectures for our fusion model with high efficiency.
arXiv Detail & Related papers (2023-05-25T08:54:08Z) - Magic ELF: Image Deraining Meets Association Learning and Transformer [63.761812092934576]
This paper aims to unify CNN and Transformer to take advantage of their learning merits for image deraining.
A novel multi-input attention module (MAM) is proposed to associate rain removal and background recovery.
Our proposed method (dubbed as ELF) outperforms the state-of-the-art approach (MPRNet) by 0.25 dB on average.
arXiv Detail & Related papers (2022-07-21T12:50:54Z) - Unsupervised Image Fusion Method based on Feature Mutual Mapping [16.64607158983448]
We propose an unsupervised adaptive image fusion method to address the above issues.
We construct a global map to measure the connections of pixels between the input source images.
Our method achieves superior performance in both visual perception and objective evaluation.
arXiv Detail & Related papers (2022-01-25T07:50:14Z) - CSformer: Bridging Convolution and Transformer for Compressive Sensing [65.22377493627687]
This paper proposes a hybrid framework that integrates the advantages of leveraging detailed spatial information from CNN and the global context provided by transformer for enhanced representation learning.
The proposed approach is an end-to-end compressive image sensing method, composed of adaptive sampling and recovery.
The experimental results demonstrate the effectiveness of the dedicated transformer-based architecture for compressive sensing.
arXiv Detail & Related papers (2021-12-31T04:37:11Z) - Image Fusion Transformer [75.71025138448287]
In image fusion, images obtained from different sensors are fused to generate a single image with enhanced information.
In recent years, state-of-the-art methods have adopted Convolution Neural Networks (CNNs) to encode meaningful features for image fusion.
We propose a novel Image Fusion Transformer (IFT) where we develop a transformer-based multi-scale fusion strategy.
arXiv Detail & Related papers (2021-07-19T16:42:49Z) - FeatMatch: Feature-Based Augmentation for Semi-Supervised Learning [64.32306537419498]
We propose a novel learned feature-based refinement and augmentation method that produces a varied set of complex transformations.
These transformations also use information from both within-class and across-class representations that we extract through clustering.
We demonstrate that our method is comparable to current state of art for smaller datasets while being able to scale up to larger datasets.
arXiv Detail & Related papers (2020-07-16T17:55:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.