Affine-based Deformable Attention and Selective Fusion for Semi-dense Matching
- URL: http://arxiv.org/abs/2405.13874v1
- Date: Wed, 22 May 2024 17:57:37 GMT
- Title: Affine-based Deformable Attention and Selective Fusion for Semi-dense Matching
- Authors: Hongkai Chen, Zixin Luo, Yurun Tian, Xuyang Bai, Ziyu Wang, Lei Zhou, Mingmin Zhen, Tian Fang, David McKinnon, Yanghai Tsin, Long Quan,
- Abstract summary: We introduce affine-based local attention to model cross-view deformations.
We also present selective fusion to merge local and global messages from cross attention.
- Score: 30.272791354494373
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Identifying robust and accurate correspondences across images is a fundamental problem in computer vision that enables various downstream tasks. Recent semi-dense matching methods emphasize the effectiveness of fusing relevant cross-view information through Transformer. In this paper, we propose several improvements upon this paradigm. Firstly, we introduce affine-based local attention to model cross-view deformations. Secondly, we present selective fusion to merge local and global messages from cross attention. Apart from network structure, we also identify the importance of enforcing spatial smoothness in loss design, which has been omitted by previous works. Based on these augmentations, our network demonstrate strong matching capacity under different settings. The full version of our network achieves state-of-the-art performance among semi-dense matching methods at a similar cost to LoFTR, while the slim version reaches LoFTR baseline's performance with only 15% computation cost and 18% parameters.
Related papers
- Rethinking Normalization Strategies and Convolutional Kernels for Multimodal Image Fusion [25.140475569677758]
Multimodal image fusion aims to integrate information from different modalities to obtain a comprehensive image.
Existing methods tend to prioritize natural image fusion and focus on information complementary and network training strategies.
This paper dissects the significant differences between the two tasks regarding fusion goals, statistical properties, and data distribution.
arXiv Detail & Related papers (2024-11-15T08:36:24Z) - Towards Meta-Pruning via Optimal Transport [64.6060250923073]
This paper introduces a novel approach named Intra-Fusion, challenging the prevailing pruning paradigm.
We leverage the concepts of model fusion and Optimal Transport to arrive at a more effective sparse model representation.
We benchmark our results for various networks on commonly used datasets such as CIFAR-10, CIFAR-100, and ImageNet.
arXiv Detail & Related papers (2024-02-12T17:50:56Z) - FuseFormer: A Transformer for Visual and Thermal Image Fusion [3.6064695344878093]
We propose a novel methodology for the image fusion problem that mitigates the limitations associated with using classical evaluation metrics as loss functions.
Our approach integrates a transformer-based multi-scale fusion strategy that adeptly addresses local and global context information.
Our proposed method, along with the novel loss function definition, demonstrates superior performance compared to other competitive fusion algorithms.
arXiv Detail & Related papers (2024-02-01T19:40:39Z) - Learning Image Deraining Transformer Network with Dynamic Dual
Self-Attention [46.11162082219387]
This paper proposes an effective image deraining Transformer with dynamic dual self-attention (DDSA)
Specifically, we only select the most useful similarity values based on top-k approximate calculation to achieve sparse attention.
In addition, we also develop a novel spatial-enhanced feed-forward network (SEFN) to further obtain a more accurate representation for achieving high-quality derained results.
arXiv Detail & Related papers (2023-08-15T13:59:47Z) - T-Fusion Net: A Novel Deep Neural Network Augmented with Multiple
Localizations based Spatial Attention Mechanisms for Covid-19 Detection [0.7614628596146599]
The present work proposes a new deep neural network (called as, T-Fusion Net) that augments multiple localizations based spatial attention.
A homogeneous ensemble of the said network is further used to enhance image classification accuracy.
The proposed T-Fusion Net and the homogeneous ensemble model exhibit better performance, as compared to other state-of-the-art methods.
arXiv Detail & Related papers (2023-07-31T18:18:01Z) - Cross-Spatial Pixel Integration and Cross-Stage Feature Fusion Based
Transformer Network for Remote Sensing Image Super-Resolution [13.894645293832044]
Transformer-based models have shown competitive performance in remote sensing image super-resolution (RSISR)
We propose a novel transformer architecture called Cross-Spatial Pixel Integration and Cross-Stage Feature Fusion Based Transformer Network (SPIFFNet) for RSISR.
Our proposed model effectively enhances global cognition and understanding of the entire image, facilitating efficient integration of features cross-stages.
arXiv Detail & Related papers (2023-07-06T13:19:06Z) - Magic ELF: Image Deraining Meets Association Learning and Transformer [63.761812092934576]
This paper aims to unify CNN and Transformer to take advantage of their learning merits for image deraining.
A novel multi-input attention module (MAM) is proposed to associate rain removal and background recovery.
Our proposed method (dubbed as ELF) outperforms the state-of-the-art approach (MPRNet) by 0.25 dB on average.
arXiv Detail & Related papers (2022-07-21T12:50:54Z) - Cross-receptive Focused Inference Network for Lightweight Image
Super-Resolution [64.25751738088015]
Transformer-based methods have shown impressive performance in single image super-resolution (SISR) tasks.
Transformers that need to incorporate contextual information to extract features dynamically are neglected.
We propose a lightweight Cross-receptive Focused Inference Network (CFIN) that consists of a cascade of CT Blocks mixed with CNN and Transformer.
arXiv Detail & Related papers (2022-07-06T16:32:29Z) - Adaptive Split-Fusion Transformer [90.04885335911729]
We propose an Adaptive Split-Fusion Transformer (ASF-former) to treat convolutional and attention branches differently with adaptive weights.
Experiments on standard benchmarks, such as ImageNet-1K, show that our ASF-former outperforms its CNN, transformer counterparts, and hybrid pilots in terms of accuracy.
arXiv Detail & Related papers (2022-04-26T10:00:28Z) - Augmenting Convolutional networks with attention-based aggregation [55.97184767391253]
We show how to augment any convolutional network with an attention-based global map to achieve non-local reasoning.
We plug this learned aggregation layer with a simplistic patch-based convolutional network parametrized by 2 parameters (width and depth)
It yields surprisingly competitive trade-offs between accuracy and complexity, in particular in terms of memory consumption.
arXiv Detail & Related papers (2021-12-27T14:05:41Z) - FeatMatch: Feature-Based Augmentation for Semi-Supervised Learning [64.32306537419498]
We propose a novel learned feature-based refinement and augmentation method that produces a varied set of complex transformations.
These transformations also use information from both within-class and across-class representations that we extract through clustering.
We demonstrate that our method is comparable to current state of art for smaller datasets while being able to scale up to larger datasets.
arXiv Detail & Related papers (2020-07-16T17:55:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.