論文の概要: Multivariate Probabilistic Time Series Forecasting with Correlated Errors
- arxiv url: http://arxiv.org/abs/2402.01000v3
- Date: Fri, 31 May 2024 14:49:11 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-03 20:12:03.970866
- Title: Multivariate Probabilistic Time Series Forecasting with Correlated Errors
- Title(参考訳): 相関誤差を用いた多変量確率時系列予測
- Authors: Vincent Zhihao Zheng, Lijun Sun,
- Abstract要約: 本稿では,ガウス分布誤差を持つ自己回帰モデルに対して,複数ステップにわたる誤差の共分散構造を学習するプラグイン・アンド・プレイ手法を提案する。
学習された共分散行列は、観測された残差に基づいて予測を校正するのに使うことができる。
- 参考スコア(独自算出の注目度): 17.212396544233307
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurately modeling the correlation structure of errors is essential for reliable uncertainty quantification in probabilistic time series forecasting. Recent deep learning models for multivariate time series have developed efficient parameterizations for time-varying contemporaneous covariance, but they often assume temporal independence of errors for simplicity. However, real-world data frequently exhibit significant error autocorrelation and cross-lag correlation due to factors such as missing covariates. In this paper, we present a plug-and-play method that learns the covariance structure of errors over multiple steps for autoregressive models with Gaussian-distributed errors. To achieve scalable inference and computational efficiency, we model the contemporaneous covariance using a low-rank-plus-diagonal parameterization and characterize cross-covariance through a group of independent latent temporal processes. The learned covariance matrix can be used to calibrate predictions based on observed residuals. We evaluate our method on probabilistic models built on RNN and Transformer architectures, and the results confirm the effectiveness of our approach in enhancing predictive accuracy and uncertainty quantification without significantly increasing the parameter size.
- Abstract(参考訳): 確率的時系列予測において、誤差の相関構造を正確にモデル化することは確実な不確実性定量化に不可欠である。
近年の多変量時系列の深層学習モデルでは、時間変化の同時共分散に対する効率的なパラメータ化が開発されているが、単純さのためにエラーの時間的独立性を仮定することが多い。
しかし,実世界のデータは,共変量不足などの要因により,大きな誤差自己相関とクロスラグ相関を示すことが多い。
本稿では,ガウス分布誤差を持つ自己回帰モデルに対して,複数ステップにわたる誤差の共分散構造を学習するプラグイン・アンド・プレイ方式を提案する。
拡張性のある推論と計算効率を実現するために、低ランク+対角パラメーター化を用いて同時共分散をモデル化し、独立な潜時過程の群を通じて相互共分散を特徴付ける。
学習された共分散行列は、観測された残差に基づいて予測を校正するのに使うことができる。
提案手法は, RNN と Transformer アーキテクチャ上に構築された確率モデルを用いて評価し, パラメータサイズを著しく増大させることなく, 予測精度と不確実性定量化を向上する手法の有効性を検証した。
関連論文リスト
- Deep Ensembles Meets Quantile Regression: Uncertainty-aware Imputation
for Time Series [49.992908221544624]
時系列データは、しばしば多くの欠落した値を示し、これは時系列計算タスクである。
従来の深層学習法は時系列計算に有効であることが示されている。
本研究では,不確実性のある高精度な計算を行う非生成時系列計算法を提案する。
論文 参考訳(メタデータ) (2023-12-03T05:52:30Z) - Structured Radial Basis Function Network: Modelling Diversity for
Multiple Hypotheses Prediction [51.82628081279621]
多重モード回帰は非定常過程の予測や分布の複雑な混合において重要である。
構造的放射基底関数ネットワークは回帰問題に対する複数の仮説予測器のアンサンブルとして提示される。
この構造モデルにより, このテッセルレーションを効率よく補間し, 複数の仮説対象分布を近似することが可能であることが証明された。
論文 参考訳(メタデータ) (2023-09-02T01:27:53Z) - Better Batch for Deep Probabilistic Time Series Forecasting [15.31488551912888]
本稿では,確率的予測精度を高めるために,誤り自己相関を取り入れた新しいトレーニング手法を提案する。
本手法は,モデルトレーニングのためのD$連続時系列セグメントのコレクションとしてミニバッチを構築する。
各ミニバッチ上で時間変化の共分散行列を明示的に学習し、隣接する時間ステップ間の誤差相関を符号化する。
論文 参考訳(メタデータ) (2023-05-26T15:36:59Z) - Scalable Dynamic Mixture Model with Full Covariance for Probabilistic
Traffic Forecasting [16.04029885574568]
時間変化誤差過程に対するゼロ平均ガウス分布の動的混合を提案する。
提案手法は,学習すべきパラメータを数つ追加するだけで,既存のディープラーニングフレームワークにシームレスに統合することができる。
提案手法を交通速度予測タスク上で評価し,提案手法がモデル水平線を改良するだけでなく,解釈可能な時間相関構造も提供することを発見した。
論文 参考訳(メタデータ) (2022-12-10T22:50:00Z) - Learning Asynchronous and Error-prone Longitudinal Data via Functional
Calibration [4.446626375802735]
本稿では,測定誤差を伴う関数データに基づいて,経時的共変過程を効率的に学習する機能キャリブレーション手法を提案する。
時間不変係数を用いた回帰では、推定器はルート-n一貫性を持ち、ルート-n正規であり、時間可変係数モデルでは、推定器は最適な変動係数モデル収束率を有する。
提案手法の有効性とユーザビリティをシミュレーションにより検証し,全国女性健康研究への応用について検討した。
論文 参考訳(メタデータ) (2022-09-28T03:27:31Z) - Benign Overfitting in Time Series Linear Model with
Over-Parameterization [5.68558935178946]
複数の依存型に基づく推定器の過大なリスクの理論を考案する。
短期記憶プロセスにおけるリスクの収束率は、独立データの場合と同一であることを示す。
論文 参考訳(メタデータ) (2022-04-18T15:26:58Z) - TACTiS: Transformer-Attentional Copulas for Time Series [76.71406465526454]
時間変化量の推定は、医療や金融などの分野における意思決定の基本的な構成要素である。
本稿では,アテンションベースデコーダを用いて関節分布を推定する多元的手法を提案する。
本研究では,本モデルが実世界の複数のデータセットに対して最先端の予測を生成することを示す。
論文 参考訳(メタデータ) (2022-02-07T21:37:29Z) - Anomaly Detection of Time Series with Smoothness-Inducing Sequential
Variational Auto-Encoder [59.69303945834122]
Smoothness-Inducing Sequential Variational Auto-Encoder (SISVAE) モデルを提案する。
我々のモデルは、フレキシブルニューラルネットワークを用いて各タイムスタンプの平均と分散をパラメータ化する。
合成データセットと公開実世界のベンチマークの両方において,本モデルの有効性を示す。
論文 参考訳(メタデータ) (2021-02-02T06:15:15Z) - Adjusting for Autocorrelated Errors in Neural Networks for Time Series
Regression and Forecasting [10.659189276058948]
我々は,自己相関係数をモデルパラメータと組み合わせて学習し,自己相関誤差の補正を行う。
時系列回帰では,大規模な実験により,本手法がPrais-Winsten法より優れていることが示された。
実世界の幅広いデータセットを対象とした結果から,ほぼすべてのケースにおいて,本手法が性能を向上させることが示唆された。
論文 参考訳(メタデータ) (2021-01-28T04:25:51Z) - Good Classifiers are Abundant in the Interpolating Regime [64.72044662855612]
補間分類器間のテストエラーの完全な分布を正確に計算する手法を開発した。
テストエラーは、最悪の補間モデルのテストエラーから大きく逸脱する、小さな典型的な$varepsilon*$に集中する傾向にある。
以上の結果から,統計的学習理論における通常の解析手法は,実際に観測された優れた一般化性能を捉えるのに十分な粒度にはならない可能性が示唆された。
論文 参考訳(メタデータ) (2020-06-22T21:12:31Z) - Machine learning for causal inference: on the use of cross-fit
estimators [77.34726150561087]
より優れた統計特性を得るために、二重ローバストなクロスフィット推定器が提案されている。
平均因果効果(ACE)に対する複数の推定器の性能評価のためのシミュレーション研究を行った。
機械学習で使用する場合、二重確率のクロスフィット推定器は、バイアス、分散、信頼区間のカバレッジで他のすべての推定器よりも大幅に優れていた。
論文 参考訳(メタデータ) (2020-04-21T23:09:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。