論文の概要: Observation Error Covariance Specification in Dynamical Systems for Data
assimilation using Recurrent Neural Networks
- arxiv url: http://arxiv.org/abs/2111.06447v1
- Date: Thu, 11 Nov 2021 20:23:00 GMT
- ステータス: 処理完了
- システム内更新日: 2021-11-15 13:26:48.199781
- Title: Observation Error Covariance Specification in Dynamical Systems for Data
assimilation using Recurrent Neural Networks
- Title(参考訳): リカレントニューラルネットワークを用いたデータ同化のための動的システムの観測誤差共分散仕様
- Authors: Sibo Cheng, Mingming Qiu
- Abstract要約: 長期記憶(LSTM)リカレントニューラルネットワーク(RNN)に基づくデータ駆動型アプローチを提案する。
提案手法では,事前の誤差分布に関する知識や仮定は不要である。
提案手法を,DI01とD05という2つの最先端共分散チューニングアルゴリズムと比較した。
- 参考スコア(独自算出の注目度): 0.5330240017302621
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Data assimilation techniques are widely used to predict complex dynamical
systems with uncertainties, based on time-series observation data. Error
covariance matrices modelling is an important element in data assimilation
algorithms which can considerably impact the forecasting accuracy. The
estimation of these covariances, which usually relies on empirical assumptions
and physical constraints, is often imprecise and computationally expensive
especially for systems of large dimension. In this work, we propose a
data-driven approach based on long short term memory (LSTM) recurrent neural
networks (RNN) to improve both the accuracy and the efficiency of observation
covariance specification in data assimilation for dynamical systems. Learning
the covariance matrix from observed/simulated time-series data, the proposed
approach does not require any knowledge or assumption about prior error
distribution, unlike classical posterior tuning methods. We have compared the
novel approach with two state-of-the-art covariance tuning algorithms, namely
DI01 and D05, first in a Lorenz dynamical system and then in a 2D shallow water
twin experiments framework with different covariance parameterization using
ensemble assimilation. This novel method shows significant advantages in
observation covariance specification, assimilation accuracy and computational
efficiency.
- Abstract(参考訳): データ同化技術は時系列観測データに基づいて不確実性のある複雑な力学系を予測するために広く用いられている。
誤差共分散行列モデリングは、予測精度に大きな影響を与えるデータ同化アルゴリズムの重要な要素である。
通常、経験的仮定や物理的制約に依存するこれらの共分散の推定は、特に大きな次元の系では不正確で計算的に高価であることが多い。
本研究では,長期記憶(LSTM)リカレントニューラルネットワーク(RNN)に基づくデータ駆動型アプローチを提案し,動的システムにおけるデータ同化における観測共分散仕様の精度と効率を両立させる。
観測・シミュレーションされた時系列データから共分散行列を学習し,従来の後方調整法とは異なり,先行誤差分布に関する知識や仮定は不要である。
本手法は,ロレンツ力学系におけるDI01とD05の2つの状態共分散チューニングアルゴリズムと,アンサンブル同化を用いた共分散パラメータの異なる2次元浅水双対実験フレームワークを比較した。
本手法は,観測共分散仕様,同化精度,計算効率において有意な利点を示す。
関連論文リスト
- Online Variational Sequential Monte Carlo [49.97673761305336]
我々は,計算効率が高く正確なモデルパラメータ推定とベイジアン潜在状態推定を提供する変分連続モンテカルロ法(VSMC)を構築した。
オンラインVSMCは、パラメータ推定と粒子提案適応の両方を効率よく、完全にオンザフライで実行することができる。
論文 参考訳(メタデータ) (2023-12-19T21:45:38Z) - Efficient Interpretable Nonlinear Modeling for Multiple Time Series [5.448070998907116]
本稿では,複数時系列に対する効率的な非線形モデリング手法を提案する。
異なる時系列変数間の非線形相互作用を含む。
実験結果から,提案アルゴリズムは相似的にVAR係数の支持値の同定を改善することが示された。
論文 参考訳(メタデータ) (2023-09-29T11:42:59Z) - Non-Parametric Learning of Stochastic Differential Equations with Non-asymptotic Fast Rates of Convergence [65.63201894457404]
非線形微分方程式のドリフトと拡散係数の同定のための新しい非パラメトリック学習パラダイムを提案する。
鍵となる考え方は、基本的には、対応するフォッカー・プランク方程式のRKHSに基づく近似をそのような観測に適合させることである。
論文 参考訳(メタデータ) (2023-05-24T20:43:47Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
実験データから未知のパラメータを復元するために、モデルハミルトンのシミュレーションデータを模倣するために訓練されたニューラルネットワークと自動微分を組み合わせた人工知能フレームワークを開発する。
そこで本研究では, 実時間から多次元散乱データに適用可能な微分可能なモデルを1回だけ構築し, 訓練する能力について述べる。
論文 参考訳(メタデータ) (2023-04-08T07:55:36Z) - A Causality-Based Learning Approach for Discovering the Underlying
Dynamics of Complex Systems from Partial Observations with Stochastic
Parameterization [1.2882319878552302]
本稿では,部分的な観測を伴う複雑な乱流系の反復学習アルゴリズムを提案する。
モデル構造を識別し、観測されていない変数を復元し、パラメータを推定する。
数値実験により、新しいアルゴリズムはモデル構造を同定し、多くの複雑な非線形系に対して適切なパラメータ化を提供することに成功した。
論文 参考訳(メタデータ) (2022-08-19T00:35:03Z) - Equivariance Discovery by Learned Parameter-Sharing [153.41877129746223]
データから解釈可能な等価性を発見する方法について検討する。
具体的には、モデルのパラメータ共有方式に対する最適化問題として、この発見プロセスを定式化する。
また,ガウスデータの手法を理論的に解析し,研究された発見スキームとオラクルスキームの間の平均2乗ギャップを限定する。
論文 参考訳(メタデータ) (2022-04-07T17:59:19Z) - Generalised Latent Assimilation in Heterogeneous Reduced Spaces with
Machine Learning Surrogate Models [10.410970649045943]
我々は,低次サロゲートモデルと新しいデータ同化手法を組み合わせたシステムを開発した。
一般化された潜在同化は、低次モデリングによって提供される効率とデータ同化の精度の両方の恩恵を受けることができる。
論文 参考訳(メタデータ) (2022-04-07T15:13:12Z) - Neural Ordinary Differential Equations for Nonlinear System
Identification [0.9864260997723973]
本研究では,NODEの性能をニューラル状態空間モデルと古典線形システム同定法と比較する。
実験の結果,NODEはベンチマーク手法に比べて精度を桁違いに向上できることがわかった。
論文 参考訳(メタデータ) (2022-02-28T22:25:53Z) - A Priori Denoising Strategies for Sparse Identification of Nonlinear
Dynamical Systems: A Comparative Study [68.8204255655161]
本研究では, 局所的およびグローバルな平滑化手法の性能と, 状態測定値の偏差について検討・比較する。
一般に,測度データセット全体を用いたグローバルな手法は,局所点の周辺に隣接するデータサブセットを用いる局所的手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2022-01-29T23:31:25Z) - Post-mortem on a deep learning contest: a Simpson's paradox and the
complementary roles of scale metrics versus shape metrics [61.49826776409194]
我々は、ニューラルネットワーク(NN)モデルの一般化精度を予測するために、コンテストで公に利用可能にされたモデルのコーパスを分析する。
メトリクスが全体としてよく機能するが、データのサブパーティションではあまり機能しない。
本稿では,データに依存しない2つの新しい形状指標と,一連のNNのテスト精度の傾向を予測できるデータ依存指標を提案する。
論文 参考訳(メタデータ) (2021-06-01T19:19:49Z) - Data Assimilation Networks [1.5545257664210517]
データ同化は、システムの数学的表現とノイズの観測を組み合わせることで、力学系の状態を予測することを目的としている。
本稿では,再帰的エルマンネットワークとデータ同化アルゴリズムを一般化した完全データ駆動型ディープラーニングアーキテクチャを提案する。
本アーキテクチャは, 明示的な正規化手法を使わずに, システム状態の確率密度関数の解析と伝播の両面において, EnKF に匹敵する性能を達成している。
論文 参考訳(メタデータ) (2020-10-19T17:35:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。