論文の概要: Unconditional Latent Diffusion Models Memorize Patient Imaging Data: Implications for Openly Sharing Synthetic Data
- arxiv url: http://arxiv.org/abs/2402.01054v2
- Date: Mon, 15 Jul 2024 09:22:45 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-17 02:05:02.686263
- Title: Unconditional Latent Diffusion Models Memorize Patient Imaging Data: Implications for Openly Sharing Synthetic Data
- Title(参考訳): 患者の画像データを記憶する非条件潜時拡散モデル:オープン共有合成データへの意味
- Authors: Salman Ul Hassan Dar, Marvin Seyfarth, Jannik Kahmann, Isabelle Ayx, Theano Papavassiliu, Stefan O. Schoenberg, Norbert Frey, Bettina Baeßler, Sebastian Foersch, Daniel Truhn, Jakob Nikolas Kather, Sandy Engelhardt,
- Abstract要約: 生成型AIモデルは、オープンデータの共有を容易にするために注目を集めている。
これらのモデルは、新規な合成サンプルの代わりに患者データコピーを生成する。
我々は,合成データ生成のためのCT,MR,X線データセット上で2次元および3次元潜時拡散モデルを訓練する。
- 参考スコア(独自算出の注目度): 2.1375651880073834
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: AI models present a wide range of applications in the field of medicine. However, achieving optimal performance requires access to extensive healthcare data, which is often not readily available. Furthermore, the imperative to preserve patient privacy restricts patient data sharing with third parties and even within institutes. Recently, generative AI models have been gaining traction for facilitating open-data sharing by proposing synthetic data as surrogates of real patient data. Despite the promise, these models are susceptible to patient data memorization, where models generate patient data copies instead of novel synthetic samples. Considering the importance of the problem, it has received little attention in the medical imaging community. To this end, we assess memorization in unconditional latent diffusion models. We train 2D and 3D latent diffusion models on CT, MR, and X-ray datasets for synthetic data generation. Afterwards, we detect the amount of training data memorized utilizing our self-supervised approach and further investigate various factors that can influence memorization. Our findings show a surprisingly high degree of patient data memorization across all datasets, with approximately 40.9% of patient data being memorized and 78.5% of synthetic samples identified as patient data copies on average in our experiments. Further analyses reveal that using augmentation strategies during training can reduce memorization while over-training the models can enhance it. Although increasing the dataset size does not reduce memorization and might even enhance it, it does lower the probability of a synthetic sample being a patient data copy. Collectively, our results emphasize the importance of carefully training generative models on private medical imaging datasets, and examining the synthetic data to ensure patient privacy before sharing it for medical research and applications.
- Abstract(参考訳): AIモデルは医学の分野で幅広い応用を提示する。
しかし、最適なパフォーマンスを達成するには広範な医療データへのアクセスが必要である。
さらに、患者のプライバシを維持する義務は、サードパーティや機関内でも、患者のデータ共有を制限する。
近年、生成AIモデルは、実際の患者データのサロゲートとして合成データを提案することで、オープンデータ共有を促進するために牽引されている。
約束にもかかわらず、これらのモデルは患者データの暗記に影響を受けやすく、新しい合成サンプルではなく、患者データのコピーを生成する。
問題の重要性を考えると、医療画像のコミュニティではほとんど注目されていない。
この目的のために、無条件潜時拡散モデルにおける記憶の評価を行う。
我々は,合成データ生成のためのCT,MR,X線データセット上で2次元および3次元潜時拡散モデルを訓練する。
その後、自己教師型アプローチを用いて記憶されたトレーニングデータの量を検出し、記憶に影響を及ぼす様々な要因を更に調査する。
実験の結果, 患者データの約40.9%が記憶され, 78.5%が平均的な患者データコピーとして同定された。
さらに、トレーニング中に強化戦略を用いることで、過度にトレーニングしながら記憶を減らし、それを強化できることが明らかとなった。
データセットのサイズが大きくなると記憶が減少せず、さらに強化される可能性があるが、患者データコピーである合成サンプルの確率は低下する。
本研究は, 医用医用画像データセットにおける生成モデルを慎重に訓練することの重要性を強調し, 患者プライバシを確保するため, 医療研究や応用のために共有する前に, 合成データを調べることの重要性を強調した。
関連論文リスト
- Extracting Training Data from Unconditional Diffusion Models [76.85077961718875]
拡散確率モデル(DPM)は、生成人工知能(AI)の主流モデルとして採用されている。
本研究の目的は,1) 理論解析のための記憶量,2) 情報ラベルとランダムラベルを用いた条件記憶量,3) 記憶量測定のための2つのより良い評価指標を用いて,DPMにおける記憶量の理論的理解を確立することである。
提案手法は,理論解析に基づいて,SIDE (textbfSurrogate condItional Data extract) と呼ばれる新しいデータ抽出手法を提案する。
論文 参考訳(メタデータ) (2024-06-18T16:20:12Z) - Zero-shot and Few-shot Generation Strategies for Artificial Clinical Records [1.338174941551702]
本研究は,Llama 2 LLMが患者情報を正確に反映した合成医療記録を作成する能力を評価するものである。
筆者らは,MIMIC-IVデータセットから得られたデータを用いて,現在史の物語を生成することに重点を置いている。
このチェーン・オブ・シークレットのアプローチにより、ゼロショットモデルが、ルージュのメトリクス評価に基づいて、微調整されたモデルと同等の結果が得られることが示唆された。
論文 参考訳(メタデータ) (2024-03-13T16:17:09Z) - How Good Are Synthetic Medical Images? An Empirical Study with Lung
Ultrasound [0.3312417881789094]
生成モデルを使用して合成トレーニングデータを追加することで、データの不足に対処するための低コストな方法が提供される。
合成データと実データの両方によるトレーニングは、実データのみによるトレーニングよりも優れていることを示す。
論文 参考訳(メタデータ) (2023-10-05T15:42:53Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
本稿では,MedDiffusion という,エンドツーエンドの拡散に基づくリスク予測モデルを提案する。
トレーニング中に合成患者データを作成し、サンプルスペースを拡大することで、リスク予測性能を向上させる。
ステップワイズ・アテンション・メカニズムを用いて患者の来訪者間の隠れた関係を識別し、高品質なデータを生成する上で最も重要な情報をモデルが自動的に保持することを可能にする。
論文 参考訳(メタデータ) (2023-10-04T01:36:30Z) - Investigating Data Memorization in 3D Latent Diffusion Models for
Medical Image Synthesis [0.6382686594288781]
光子計数冠状動脈造影および膝磁気共鳴画像データセットを用いた3次元潜時拡散モデルの記憶能力の評価を行った。
以上の結果から,このような潜伏拡散モデルがトレーニングデータを記憶し,記憶化を緩和するための戦略を考案する必要があることが示唆された。
論文 参考訳(メタデータ) (2023-07-03T16:39:28Z) - Textual Data Augmentation for Patient Outcomes Prediction [67.72545656557858]
本稿では,患者の電子カルテに人工的な臨床ノートを作成するための新しいデータ拡張手法を提案する。
生成言語モデルGPT-2を微調整し、ラベル付きテキストを元のトレーニングデータで合成する。
今回,最も多い患者,すなわち30日間の寛解率について検討した。
論文 参考訳(メタデータ) (2022-11-13T01:07:23Z) - Bootstrapping Your Own Positive Sample: Contrastive Learning With
Electronic Health Record Data [62.29031007761901]
本稿では,新しいコントラスト型正規化臨床分類モデルを提案する。
EHRデータに特化した2つのユニークなポジティブサンプリング戦略を紹介します。
私たちのフレームワークは、現実世界のCOVID-19 EHRデータの死亡リスクを予測するために、競争の激しい実験結果をもたらします。
論文 参考訳(メタデータ) (2021-04-07T06:02:04Z) - FLOP: Federated Learning on Medical Datasets using Partial Networks [84.54663831520853]
新型コロナウイルスの感染拡大で医療資源が不足している。
新型コロナウイルスの診断を緩和するために、さまざまなデータ駆動型ディープラーニングモデルが開発されている。
患者のプライバシー上の懸念から、データそのものはまだ乏しい。
我々は、textbfPartial Networks (FLOP) を用いた、シンプルで効果的な textbfFederated textbfL textbfon Medical データセットを提案する。
論文 参考訳(メタデータ) (2021-02-10T01:56:58Z) - Overcoming Barriers to Data Sharing with Medical Image Generation: A
Comprehensive Evaluation [17.983449515155414]
我々は、GAN(Generative Adversarial Networks)を用いて、合成患者データからなる医用画像データセットを作成する。
合成画像は、理想的には、ソースデータセットと類似した統計特性を持つが、機密性の高い個人情報は含まない。
合成画像の品質は、合成データセットと実データセットの両方で訓練された予測モデルの性能差によって測定する。
論文 参考訳(メタデータ) (2020-11-29T15:41:46Z) - Longitudinal modeling of MS patient trajectories improves predictions of
disability progression [2.117653457384462]
本研究は, 実世界の患者データから情報を最適に抽出する作業に対処する。
本研究では,患者軌跡モデリングに適した機械学習手法を用いることで,患者の障害進行を2年間の地平線で予測できることを示す。
文献で利用可能なモデルと比較して、この研究はMS病の進行予測に最も完全な患者履歴を使用する。
論文 参考訳(メタデータ) (2020-11-09T20:48:00Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
本研究は, 類似患者のサブグループを同定し, 数発の疾患のサブタイプ予測問題に焦点を当てた。
新しいモデルを開発するためにメタラーニング技術を導入し、関連する臨床課題から共通の経験や知識を抽出する。
我々の新しいモデルは、単純だが効果的なメタ学習マシンであるPrototypeal Networkと呼ばれる、慎重に設計されたメタラーナーに基づいて構築されている。
論文 参考訳(メタデータ) (2020-09-02T02:50:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。