Unconditional Latent Diffusion Models Memorize Patient Imaging Data: Implications for Openly Sharing Synthetic Data
- URL: http://arxiv.org/abs/2402.01054v3
- Date: Tue, 07 Jan 2025 21:53:44 GMT
- Title: Unconditional Latent Diffusion Models Memorize Patient Imaging Data: Implications for Openly Sharing Synthetic Data
- Authors: Salman Ul Hassan Dar, Marvin Seyfarth, Isabelle Ayx, Theano Papavassiliu, Stefan O. Schoenberg, Robert Malte Siepmann, Fabian Christopher Laqua, Jannik Kahmann, Norbert Frey, Bettina Baeßler, Sebastian Foersch, Daniel Truhn, Jakob Nikolas Kather, Sandy Engelhardt,
- Abstract summary: We train latent diffusion models on CT, MR, and X-ray datasets for synthetic data generation.
We then detect the amount of training data memorized utilizing our novel self-supervised copy detection approach.
Our findings show a surprisingly high degree of patient data memorization across all datasets.
- Score: 2.04850174048739
- License:
- Abstract: AI models present a wide range of applications in the field of medicine. However, achieving optimal performance requires access to extensive healthcare data, which is often not readily available. Furthermore, the imperative to preserve patient privacy restricts patient data sharing with third parties and even within institutes. Recently, generative AI models have been gaining traction for facilitating open-data sharing by proposing synthetic data as surrogates of real patient data. Despite the promise, some of these models are susceptible to patient data memorization, where models generate patient data copies instead of novel synthetic samples. Considering the importance of the problem, surprisingly it has received relatively little attention in the medical imaging community. To this end, we assess memorization in unconditional latent diffusion models. We train latent diffusion models on CT, MR, and X-ray datasets for synthetic data generation. We then detect the amount of training data memorized utilizing our novel self-supervised copy detection approach and further investigate various factors that can influence memorization. Our findings show a surprisingly high degree of patient data memorization across all datasets. Comparison with non-diffusion generative models, such as autoencoders and generative adversarial networks, indicates that while latent diffusion models are more susceptible to memorization, overall they outperform non-diffusion models in synthesis quality. Further analyses reveal that using augmentation strategies, small architecture, and increasing dataset can reduce memorization while over-training the models can enhance it. Collectively, our results emphasize the importance of carefully training generative models on private medical imaging datasets, and examining the synthetic data to ensure patient privacy before sharing it for medical research and applications.
Related papers
- Latent Drifting in Diffusion Models for Counterfactual Medical Image Synthesis [55.959002385347645]
Scaling by training on large datasets has been shown to enhance the quality and fidelity of image generation and manipulation with diffusion models.
Latent Drifting enables diffusion models to be conditioned for medical images fitted for the complex task of counterfactual image generation.
Our results demonstrate significant performance gains in various scenarios when combined with different fine-tuning schemes.
arXiv Detail & Related papers (2024-12-30T01:59:34Z) - Extracting Training Data from Unconditional Diffusion Models [76.85077961718875]
diffusion probabilistic models (DPMs) are being employed as mainstream models for generative artificial intelligence (AI)
We aim to establish a theoretical understanding of memorization in DPMs with 1) a memorization metric for theoretical analysis, 2) an analysis of conditional memorization with informative and random labels, and 3) two better evaluation metrics for measuring memorization.
Based on the theoretical analysis, we propose a novel data extraction method called textbfSurrogate condItional Data Extraction (SIDE) that leverages a trained on generated data as a surrogate condition to extract training data directly from unconditional diffusion models.
arXiv Detail & Related papers (2024-06-18T16:20:12Z) - Improving Deep Learning-based Automatic Cranial Defect Reconstruction by Heavy Data Augmentation: From Image Registration to Latent Diffusion Models [0.2911706166691895]
The work is a considerable contribution to the field of artificial intelligence in the automatic modeling of personalized cranial implants.
We show that the use of heavy data augmentation significantly increases both the quantitative and qualitative outcomes.
We also show that the synthetically augmented network successfully reconstructs real clinical defects.
arXiv Detail & Related papers (2024-06-10T15:34:23Z) - DetDiffusion: Synergizing Generative and Perceptive Models for Enhanced Data Generation and Perception [78.26734070960886]
Current perceptive models heavily depend on resource-intensive datasets.
We introduce perception-aware loss (P.A. loss) through segmentation, improving both quality and controllability.
Our method customizes data augmentation by extracting and utilizing perception-aware attribute (P.A. Attr) during generation.
arXiv Detail & Related papers (2024-03-20T04:58:03Z) - Zero-shot and Few-shot Generation Strategies for Artificial Clinical Records [1.338174941551702]
This study assesses the capability of the Llama 2 LLM to create synthetic medical records that accurately reflect real patient information.
We focus on generating synthetic narratives for the History of Present Illness section, utilising data from the MIMIC-IV dataset for comparison.
Our findings suggest that this chain-of-thought prompted approach allows the zero-shot model to achieve results on par with those of fine-tuned models, based on Rouge metrics evaluation.
arXiv Detail & Related papers (2024-03-13T16:17:09Z) - How Good Are Synthetic Medical Images? An Empirical Study with Lung
Ultrasound [0.3312417881789094]
Adding synthetic training data using generative models offers a low-cost method to deal with the data scarcity challenge.
We show that training with both synthetic and real data outperforms training with real data alone.
arXiv Detail & Related papers (2023-10-05T15:42:53Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
This paper introduces a novel, end-to-end diffusion-based risk prediction model, named MedDiffusion.
It enhances risk prediction performance by creating synthetic patient data during training to enlarge sample space.
It discerns hidden relationships between patient visits using a step-wise attention mechanism, enabling the model to automatically retain the most vital information for generating high-quality data.
arXiv Detail & Related papers (2023-10-04T01:36:30Z) - Investigating Data Memorization in 3D Latent Diffusion Models for
Medical Image Synthesis [0.6382686594288781]
We assess the memorization capacity of 3D latent diffusion models on photon-counting coronary computed tomography angiography and knee magnetic resonance imaging datasets.
Our results suggest that such latent diffusion models indeed memorize training data, and there is a dire need for devising strategies to mitigate memorization.
arXiv Detail & Related papers (2023-07-03T16:39:28Z) - Can segmentation models be trained with fully synthetically generated
data? [0.39577682622066246]
BrainSPADE is a model which combines a synthetic diffusion-based label generator with a semantic image generator.
Our model can produce fully synthetic brain labels on-demand, with or without pathology of interest, and then generate a corresponding MRI image of an arbitrary guided style.
Experiments show that brainSPADE synthetic data can be used to train segmentation models with performance comparable to that of models trained on real data.
arXiv Detail & Related papers (2022-09-17T05:24:04Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
We focus on few-shot disease subtype prediction problem, identifying subgroups of similar patients.
We introduce meta learning techniques to develop a new model, which can extract the common experience or knowledge from interrelated clinical tasks.
Our new model is built upon a carefully designed meta-learner, called Prototypical Network, that is a simple yet effective meta learning machine for few-shot image classification.
arXiv Detail & Related papers (2020-09-02T02:50:30Z) - Modeling Shared Responses in Neuroimaging Studies through MultiView ICA [94.31804763196116]
Group studies involving large cohorts of subjects are important to draw general conclusions about brain functional organization.
We propose a novel MultiView Independent Component Analysis model for group studies, where data from each subject are modeled as a linear combination of shared independent sources plus noise.
We demonstrate the usefulness of our approach first on fMRI data, where our model demonstrates improved sensitivity in identifying common sources among subjects.
arXiv Detail & Related papers (2020-06-11T17:29:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.