論文の概要: Online conformal prediction with decaying step sizes
- arxiv url: http://arxiv.org/abs/2402.01139v1
- Date: Fri, 2 Feb 2024 04:42:09 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-05 16:49:49.928566
- Title: Online conformal prediction with decaying step sizes
- Title(参考訳): 減衰ステップサイズによるオンライン共形予測
- Authors: Anastasios N. Angelopoulos and Rina Foygel Barber and Stephen Bates
- Abstract要約: 本稿では, 減衰段数によるオンライン共形予測手法を提案する。
従来の方法とは違って、集団の量的存在を同時に推定することができる。
- 参考スコア(独自算出の注目度): 17.852791529658166
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce a method for online conformal prediction with decaying step
sizes. Like previous methods, ours possesses a retrospective guarantee of
coverage for arbitrary sequences. However, unlike previous methods, we can
simultaneously estimate a population quantile when it exists. Our theory and
experiments indicate substantially improved practical properties: in
particular, when the distribution is stable, the coverage is close to the
desired level for every time point, not just on average over the observed
sequence.
- Abstract(参考訳): 本稿では,ステップサイズの減衰を伴うオンラインコンフォメーション予測手法を提案する。
従来の方法と同様に、任意のシーケンスに対するカバレッジのレトロスペクティブが保証されています。
しかし、従来の方法と異なり、同時に人口の量子化を推定できる。
我々の理論と実験は、特に、分布が安定な場合、その範囲は観測されたシーケンスの平均だけでなく、各時点の所望のレベルに近づいたことを示す。
関連論文リスト
- Conformal Generative Modeling with Improved Sample Efficiency through Sequential Greedy Filtering [55.15192437680943]
生成モデルは出力に対する厳密な統計的保証を欠いている。
厳密な統計的保証を満たす予測セットを生成する逐次共形予測法を提案する。
このことは、高い確率で予測セットが少なくとも1つの許容可能な(または有効な)例を含むことを保証している。
論文 参考訳(メタデータ) (2024-10-02T15:26:52Z) - Conformalized Interval Arithmetic with Symmetric Calibration [9.559062601251464]
我々は,複数の目標の和に対する予測区間に対して,単一目標に対する共形予測区間を開発する。
提案手法は, 既存のコンフォメーション手法や非コンフォメーション手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2024-08-20T15:27:18Z) - Probabilistic Conformal Prediction with Approximate Conditional Validity [81.30551968980143]
本研究では,共形手法の柔軟性と条件分布の推定を組み合わせ,予測セットを生成する手法を開発した。
我々の手法は、条件付きカバレッジの観点から既存の手法よりも一貫して優れています。
論文 参考訳(メタデータ) (2024-07-01T20:44:48Z) - Conditional validity of heteroskedastic conformal regression [12.905195278168506]
等角予測と分割等角予測は、統計的保証付き予測間隔を推定するための分布自由なアプローチを提供する。
近年の研究では、分割共形予測は、限界被覆に着目した場合、最先端の予測間隔を生み出すことが示されている。
本稿では,正規化やモンドリアン等式予測などの手法を用いて,予測間隔の構築方法について,新たな光を当てることを試みる。
論文 参考訳(メタデータ) (2023-09-15T11:10:46Z) - Improved Online Conformal Prediction via Strongly Adaptive Online
Learning [86.4346936885507]
我々は、強い適応的後悔を最小限に抑える新しいオンライン共形予測手法を開発した。
提案手法は,すべての区間において,ほぼ最適に適応的な後悔を同時に達成できることを実証する。
実験により,本手法は実世界のタスクにおける既存の手法よりも,より優れたカバレッジと予測セットが得られることがわかった。
論文 参考訳(メタデータ) (2023-02-15T18:59:30Z) - Sequential Predictive Conformal Inference for Time Series [16.38369532102931]
逐次データ(例えば時系列)に対する分布自由共形予測アルゴリズムを提案する。
具体的には,時系列データは交換不可能であり,既存の共形予測アルゴリズムでは適用できない性質を具体的に説明する。
論文 参考訳(メタデータ) (2022-12-07T05:07:27Z) - Predictive Inference with Feature Conformal Prediction [80.77443423828315]
本稿では,特徴空間への共形予測の範囲を拡大する特徴共形予測を提案する。
理論的観点からは、特徴共形予測は軽度の仮定の下で正則共形予測よりも確実に優れていることを示す。
提案手法は,バニラ共形予測だけでなく,他の適応共形予測手法と組み合わせることができる。
論文 参考訳(メタデータ) (2022-10-01T02:57:37Z) - Near-optimal inference in adaptive linear regression [60.08422051718195]
最小二乗法のような単純な方法でさえ、データが適応的に収集されるときの非正規な振る舞いを示すことができる。
我々は,これらの分布異常を少なくとも2乗推定で補正するオンラインデバイアス推定器のファミリーを提案する。
我々は,マルチアームバンディット,自己回帰時系列推定,探索による能動的学習などの応用を通して,我々の理論の有用性を実証する。
論文 参考訳(メタデータ) (2021-07-05T21:05:11Z) - Valid prediction intervals for regression problems [12.905195278168506]
本稿では,概念的・実験的観点から,上記の4つの手法のクラスを概観する。
さまざまなドメインのベンチマークデータセットの結果は、あるデータセットから別のデータセットへのパフォーマンスの大きな変動を浮き彫りにしている。
本稿では, キャリブレーション手順を使わずに, 粗悪な結果をもたらす手法の一般的なキャリブレーション手順として, コンフォメーション予測をどのように利用できるかを説明する。
論文 参考訳(メタデータ) (2021-07-01T10:59:36Z) - Batch Stationary Distribution Estimation [98.18201132095066]
サンプル遷移の組を与えられたエルゴードマルコフ鎖の定常分布を近似する問題を考える。
与えられたデータに対する補正比関数の復元に基づく一貫した推定器を提案する。
論文 参考訳(メタデータ) (2020-03-02T09:10:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。