論文の概要: Conditional validity of heteroskedastic conformal regression
- arxiv url: http://arxiv.org/abs/2309.08313v2
- Date: Tue, 30 Apr 2024 15:29:45 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-01 19:57:27.242113
- Title: Conditional validity of heteroskedastic conformal regression
- Title(参考訳): ヘテロスケダス性共形レグレッションの条件的妥当性
- Authors: Nicolas Dewolf, Bernard De Baets, Willem Waegeman,
- Abstract要約: 等角予測と分割等角予測は、統計的保証付き予測間隔を推定するための分布自由なアプローチを提供する。
近年の研究では、分割共形予測は、限界被覆に着目した場合、最先端の予測間隔を生み出すことが示されている。
本稿では,正規化やモンドリアン等式予測などの手法を用いて,予測間隔の構築方法について,新たな光を当てることを試みる。
- 参考スコア(独自算出の注目度): 12.905195278168506
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Conformal prediction, and split conformal prediction as a specific implementation, offer a distribution-free approach to estimating prediction intervals with statistical guarantees. Recent work has shown that split conformal prediction can produce state-of-the-art prediction intervals when focusing on marginal coverage, i.e. on a calibration dataset the method produces on average prediction intervals that contain the ground truth with a predefined coverage level. However, such intervals are often not adaptive, which can be problematic for regression problems with heteroskedastic noise. This paper tries to shed new light on how prediction intervals can be constructed, using methods such as normalized and Mondrian conformal prediction, in such a way that they adapt to the heteroskedasticity of the underlying process. Theoretical and experimental results are presented in which these methods are compared in a systematic way. In particular, it is shown how the conditional validity of a chosen conformal predictor can be related to (implicit) assumptions about the data-generating distribution.
- Abstract(参考訳): 共形予測と分割共形予測を具体的実装として、統計的保証付き予測区間を推定するための分布自由なアプローチを提供する。
近年の研究では、分割等角予測は、限界範囲に焦点をあてた場合の最先端の予測間隔、すなわち、事前に定義されたカバレッジレベルを持つ基底真理を含む平均予測間隔で生成するキャリブレーションデータセットを生成することが可能であることが示されている。
しかし、そのような区間は適応しないことが多く、ヘテロスケダスティックノイズを伴う回帰問題に問題となることがある。
本稿では、正規化やモンドリアン等式予測などの手法を用いて、その基礎となるプロセスのヘテロスケダスト性に適応するように、予測間隔を構築する方法について、新たな光を当てようとしている。
理論的および実験的な結果として,これらの手法を系統的に比較した。
特に、選択された共形予測器の条件付き妥当性が、データ生成分布に関する(単純な)仮定とどのように関連しているかを示す。
関連論文リスト
- Conformalized Interval Arithmetic with Symmetric Calibration [9.559062601251464]
我々は,複数の目標の和に対する予測区間に対して,単一目標に対する共形予測区間を開発する。
提案手法は, 既存のコンフォメーション手法や非コンフォメーション手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2024-08-20T15:27:18Z) - Probabilistic Conformal Prediction with Approximate Conditional Validity [81.30551968980143]
本研究では,共形手法の柔軟性と条件分布の推定を組み合わせ,予測セットを生成する手法を開発した。
我々の手法は、条件付きカバレッジの観点から既存の手法よりも一貫して優れています。
論文 参考訳(メタデータ) (2024-07-01T20:44:48Z) - Self-Calibrating Conformal Prediction [16.606421967131524]
本稿では,これらの予測に対して有限サンプル妥当性条件付き予測間隔とともに,校正点予測を実現するための自己校正等式予測を提案する。
本手法は,モデルキャリブレーションによりキャリブレーション間隔効率を向上し,特徴条件の妥当性に対して実用的な代替手段を提供する。
論文 参考訳(メタデータ) (2024-02-11T21:12:21Z) - When Rigidity Hurts: Soft Consistency Regularization for Probabilistic
Hierarchical Time Series Forecasting [69.30930115236228]
確率的階層的時系列予測は時系列予測の重要な変種である。
ほとんどの手法は点予測に焦点を絞っており、確率的確率分布を十分に調整していない。
ProFHiTは,階層全体の予測分布を共同でモデル化する完全確率的階層予測モデルである。
論文 参考訳(メタデータ) (2023-10-17T20:30:16Z) - Quantification of Predictive Uncertainty via Inference-Time Sampling [57.749601811982096]
本稿では,データあいまいさの予測不確実性を推定するためのポストホックサンプリング手法を提案する。
この方法は与えられた入力に対して異なる可算出力を生成することができ、予測分布のパラメトリック形式を仮定しない。
論文 参考訳(メタデータ) (2023-08-03T12:43:21Z) - Distribution-Free Finite-Sample Guarantees and Split Conformal
Prediction [0.0]
分割共形予測は、最小分布自由仮定の下で有限サンプル保証を得るための有望な道を表す。
1940年代に開発された分割共形予測と古典的寛容予測との関連性を強調した。
論文 参考訳(メタデータ) (2022-10-26T14:12:24Z) - Predictive Inference with Feature Conformal Prediction [80.77443423828315]
本稿では,特徴空間への共形予測の範囲を拡大する特徴共形予測を提案する。
理論的観点からは、特徴共形予測は軽度の仮定の下で正則共形予測よりも確実に優れていることを示す。
提案手法は,バニラ共形予測だけでなく,他の適応共形予測手法と組み合わせることができる。
論文 参考訳(メタデータ) (2022-10-01T02:57:37Z) - CovarianceNet: Conditional Generative Model for Correct Covariance
Prediction in Human Motion Prediction [71.31516599226606]
本稿では,将来の軌道の予測分布に関連する不確かさを正確に予測する手法を提案する。
我々のアプローチであるCovariaceNetは、ガウス潜在変数を持つ条件付き生成モデルに基づいている。
論文 参考訳(メタデータ) (2021-09-07T09:38:24Z) - Conformal histogram regression [15.153110906331737]
本稿では,スキューデータに自動的に適応可能な非パラメトリック回帰の予測間隔を計算するためのコンフォメーション手法を提案する。
ブラックボックス機械学習アルゴリズムを活用して、その出力を近似条件付きの最短予測間隔に変換する。
得られた予測間隔は、ブラックボックスモデルが一貫性のある場合、条件付きカバレッジと最適な長さを達成しながら、有限サンプルにおいて確実に限界カバレッジを有する。
論文 参考訳(メタデータ) (2021-05-18T18:05:02Z) - Balance-Subsampled Stable Prediction [55.13512328954456]
本稿では, 分数分解設計理論に基づく新しいバランスサブサンプル安定予測法を提案する。
設計理論解析により,提案手法は分布シフトによって誘導される予測器間の共起効果を低減できることを示した。
合成および実世界の両方のデータセットに関する数値実験により、BSSPアルゴリズムは未知のテストデータ間で安定した予測を行うためのベースライン法を著しく上回っていることが示された。
論文 参考訳(メタデータ) (2020-06-08T07:01:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。