論文の概要: AI Code Generators for Security: Friend or Foe?
- arxiv url: http://arxiv.org/abs/2402.01219v1
- Date: Fri, 2 Feb 2024 08:41:15 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-05 16:29:06.877863
- Title: AI Code Generators for Security: Friend or Foe?
- Title(参考訳): セキュリティのためのaiコードジェネレータ:friendかfoeか?
- Authors: Roberto Natella, Pietro Liguori, Cristina Improta, Bojan Cukic,
Domenico Cotroneo
- Abstract要約: セキュリティのためのAIコードジェネレータのユースケースをレビューし、評価ベンチマークを導入する。
人工知能(AI)コードジェネレータの最近の進歩は、悪意あるアクターによる誤用を含むソフトウェアセキュリティ研究の新たな機会を開きつつある。
- 参考スコア(独自算出の注目度): 10.006772288191875
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Recent advances of artificial intelligence (AI) code generators are opening
new opportunities in software security research, including misuse by malicious
actors. We review use cases for AI code generators for security and introduce
an evaluation benchmark.
- Abstract(参考訳): 人工知能(AI)コードジェネレータの最近の進歩は、悪意あるアクターによる誤用を含むソフトウェアセキュリティ研究の新たな機会を開きつつある。
セキュリティのためのAIコードジェネレータのユースケースをレビューし、評価ベンチマークを導入する。
関連論文リスト
- RedCode: Risky Code Execution and Generation Benchmark for Code Agents [50.81206098588923]
RedCodeはリスクの高いコード実行と生成のためのベンチマークである。
RedCode-Execは、危険なコード実行につながる可能性のある、挑戦的なプロンプトを提供する。
RedCode-Genは160のプロンプトに関数シグネチャとドキュメントを入力として提供し、コードエージェントが命令に従うかどうかを評価する。
論文 参考訳(メタデータ) (2024-11-12T13:30:06Z) - Engineering Trustworthy AI: A Developer Guide for Empirical Risk Minimization [53.80919781981027]
信頼できるAIのための重要な要件は、経験的リスク最小化のコンポーネントの設計選択に変換できる。
私たちは、AIの信頼性の新たな標準を満たすAIシステムを構築するための実用的なガイダンスを提供したいと思っています。
論文 参考訳(メタデータ) (2024-10-25T07:53:32Z) - Safetywashing: Do AI Safety Benchmarks Actually Measure Safety Progress? [59.96471873997733]
我々は、より有意義な安全指標を開発するための実証的な基盤を提案し、機械学習研究の文脈でAIの安全性を定義する。
我々は、AI安全研究のためのより厳格なフレームワークを提供し、安全性評価の科学を前進させ、測定可能な進歩への道筋を明らかにすることを目指している。
論文 参考訳(メタデータ) (2024-07-31T17:59:24Z) - Using AI Assistants in Software Development: A Qualitative Study on Security Practices and Concerns [23.867795468379743]
最近の研究は、AI生成コードがセキュリティ問題を含むことを実証している。
ソフトウェア専門家がAIアシスタントの使用とセキュリティのバランスをとる方法はまだ不明だ。
本稿では,ソフトウェアプロフェッショナルがセキュアなソフトウェア開発にAIアシスタントをどのように利用するかを検討する。
論文 参考訳(メタデータ) (2024-05-10T10:13:19Z) - DeVAIC: A Tool for Security Assessment of AI-generated Code [5.383910843560784]
DeVAIC (Detection of Vulnerabilities in AI Generated Code)は、AI生成のPythonコードのセキュリティを評価するツールである。
論文 参考訳(メタデータ) (2024-04-11T08:27:23Z) - Poisoning Programs by Un-Repairing Code: Security Concerns of
AI-generated Code [0.9790236766474201]
脆弱性コードの生成につながる新たなデータ中毒攻撃を特定します。
次に、これらの攻撃がコード生成の最先端モデルにどのように影響するかを広範囲に評価する。
論文 参考訳(メタデータ) (2024-03-11T12:47:04Z) - AI Product Security: A Primer for Developers [0.685316573653194]
機械学習製品に対する脅威を理解し、AI製品開発における共通の落とし穴を避けることが不可欠である。
この記事は、AIソフトウェア製品の開発者、デザイナー、マネージャ、研究者に宛てられている。
論文 参考訳(メタデータ) (2023-04-18T05:22:34Z) - Can AI-Generated Text be Reliably Detected? [50.95804851595018]
大規模言語モデル(LLM)は、様々なアプリケーションで非常によく機能します。
盗作、偽ニュースの発生、スパムなどの活動においてこれらのモデルが誤用される可能性があることは、彼らの責任ある使用に対する懸念を引き起こしている。
我々は、攻撃者の存在下で、これらのAIテキスト検出装置の堅牢性を強調テストする。
論文 参考訳(メタデータ) (2023-03-17T17:53:19Z) - Generation Probabilities Are Not Enough: Uncertainty Highlighting in AI Code Completions [54.55334589363247]
本研究では,不確実性に関する情報を伝達することで,プログラマがより迅速かつ正確にコードを生成することができるかどうかを検討する。
トークンのハイライトは、編集される可能性が最も高いので、タスクの完了が早くなり、よりターゲットを絞った編集が可能になることがわかりました。
論文 参考訳(メタデータ) (2023-02-14T18:43:34Z) - CodeLMSec Benchmark: Systematically Evaluating and Finding Security
Vulnerabilities in Black-Box Code Language Models [58.27254444280376]
自動コード生成のための大規模言語モデル(LLM)は、いくつかのプログラミングタスクにおいてブレークスルーを達成した。
これらのモデルのトレーニングデータは、通常、インターネット(例えばオープンソースのリポジトリから)から収集され、障害やセキュリティ上の脆弱性を含む可能性がある。
この不衛生なトレーニングデータは、言語モデルにこれらの脆弱性を学習させ、コード生成手順中にそれを伝播させる可能性がある。
論文 参考訳(メタデータ) (2023-02-08T11:54:07Z) - On Safety Assessment of Artificial Intelligence [0.0]
人工知能の多くのモデル、特に機械学習は統計モデルであることを示す。
危険なランダム障害の予算の一部は、AIシステムの確率論的欠陥行動に使用される必要がある。
我々は、安全関連システムにおけるAIの利用に決定的な研究課題を提案する。
論文 参考訳(メタデータ) (2020-02-29T14:05:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。