Transformers Learn Nonlinear Features In Context: Nonconvex Mean-field Dynamics on the Attention Landscape
- URL: http://arxiv.org/abs/2402.01258v2
- Date: Sun, 2 Jun 2024 06:31:43 GMT
- Title: Transformers Learn Nonlinear Features In Context: Nonconvex Mean-field Dynamics on the Attention Landscape
- Authors: Juno Kim, Taiji Suzuki,
- Abstract summary: Large language models based on the Transformer architecture have demonstrated impressive ability to learn in context.
We show that a common nonlinear representation or feature map can be used to enhance power of in-context learning.
- Score: 40.78854925996
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models based on the Transformer architecture have demonstrated impressive capabilities to learn in context. However, existing theoretical studies on how this phenomenon arises are limited to the dynamics of a single layer of attention trained on linear regression tasks. In this paper, we study the optimization of a Transformer consisting of a fully connected layer followed by a linear attention layer. The MLP acts as a common nonlinear representation or feature map, greatly enhancing the power of in-context learning. We prove in the mean-field and two-timescale limit that the infinite-dimensional loss landscape for the distribution of parameters, while highly nonconvex, becomes quite benign. We also analyze the second-order stability of mean-field dynamics and show that Wasserstein gradient flow almost always avoids saddle points. Furthermore, we establish novel methods for obtaining concrete improvement rates both away from and near critical points. This represents the first saddle point analysis of mean-field dynamics in general and the techniques are of independent interest.
Related papers
- Stability properties of gradient flow dynamics for the symmetric low-rank matrix factorization problem [22.648448759446907]
We show that a low-rank factorization serves as a building block in many learning tasks.
We offer new insight into the shape of the trajectories associated with local search parts of the dynamics.
arXiv Detail & Related papers (2024-11-24T20:05:10Z) - Training Dynamics of Transformers to Recognize Word Co-occurrence via Gradient Flow Analysis [97.54180451650122]
We study the dynamics of training a shallow transformer on a task of recognizing co-occurrence of two designated words.
We analyze the gradient flow dynamics of simultaneously training three attention matrices and a linear layer.
We prove a novel property of the gradient flow, termed textitautomatic balancing of gradients, which enables the loss values of different samples to decrease almost at the same rate and further facilitates the proof of near minimum training loss.
arXiv Detail & Related papers (2024-10-12T17:50:58Z) - Non-asymptotic Convergence of Training Transformers for Next-token Prediction [48.9399496805422]
Transformers have achieved extraordinary success in modern machine learning due to their excellent ability to handle sequential data.
This paper provides a fine-grained non-asymptotic analysis of the training dynamics of a one-layer transformer.
We show that the trained transformer presents non-token prediction ability with dataset shift.
arXiv Detail & Related papers (2024-09-25T20:22:06Z) - In-Context Convergence of Transformers [63.04956160537308]
We study the learning dynamics of a one-layer transformer with softmax attention trained via gradient descent.
For data with imbalanced features, we show that the learning dynamics take a stage-wise convergence process.
arXiv Detail & Related papers (2023-10-08T17:55:33Z) - Beyond the Edge of Stability via Two-step Gradient Updates [49.03389279816152]
Gradient Descent (GD) is a powerful workhorse of modern machine learning.
GD's ability to find local minimisers is only guaranteed for losses with Lipschitz gradients.
This work focuses on simple, yet representative, learning problems via analysis of two-step gradient updates.
arXiv Detail & Related papers (2022-06-08T21:32:50Z) - Convex Analysis of the Mean Field Langevin Dynamics [49.66486092259375]
convergence rate analysis of the mean field Langevin dynamics is presented.
$p_q$ associated with the dynamics allows us to develop a convergence theory parallel to classical results in convex optimization.
arXiv Detail & Related papers (2022-01-25T17:13:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.