PolypFlow: Reinforcing Polyp Segmentation with Flow-Driven Dynamics
- URL: http://arxiv.org/abs/2502.19037v1
- Date: Wed, 26 Feb 2025 10:48:33 GMT
- Title: PolypFlow: Reinforcing Polyp Segmentation with Flow-Driven Dynamics
- Authors: Pu Wang, Huaizhi Ma, Zhihua Zhang, Zhuoran Zheng,
- Abstract summary: PolypFLow is a flow-matching enhanced architecture that injects physics-inspired optimization dynamics into segmentation refinement.<n>We show that PolypFLow achieves a state-of-the-art while maintaining consistent performance in different lighting scenarios.
- Score: 25.69584903128262
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurate polyp segmentation remains challenging due to irregular lesion morphologies, ambiguous boundaries, and heterogeneous imaging conditions. While U-Net variants excel at local feature fusion, they often lack explicit mechanisms to model the dynamic evolution of segmentation confidence under uncertainty. Inspired by the interpretable nature of flow-based models, we present \textbf{PolypFLow}, a flow-matching enhanced architecture that injects physics-inspired optimization dynamics into segmentation refinement. Unlike conventional cascaded networks, our framework solves an ordinary differential equation (ODE) to progressively align coarse initial predictions with ground truth masks through learned velocity fields. This trajectory-based refinement offers two key advantages: 1) Interpretable Optimization: Intermediate flow steps visualize how the model corrects under-segmented regions and sharpens boundaries at each ODE-solver iteration, demystifying the ``black-box" refinement process; 2) Boundary-Aware Robustness: The flow dynamics explicitly model gradient directions along polyp edges, enhancing resilience to low-contrast regions and motion artifacts. Numerous experimental results show that PolypFLow achieves a state-of-the-art while maintaining consistent performance in different lighting scenarios.
Related papers
- Motion-Aware Generative Frame Interpolation [23.380470636851022]
Flow-based frame methods ensure motion stability through estimated intermediate flow but often introduce severe artifacts in complex motion regions.
Recent generative approaches, boosted by large-scale pre-trained video generation models, show promise in handling intricate scenes.
We propose Motion-aware Generative frame (MoG) that synergizes intermediate flow guidance with generative capacities to enhance fidelity.
arXiv Detail & Related papers (2025-01-07T11:03:43Z) - A domain decomposition-based autoregressive deep learning model for unsteady and nonlinear partial differential equations [2.7755345520127936]
We propose a domain-decomposition-based deep learning (DL) framework, named CoMLSim, for accurately modeling unsteady and nonlinear partial differential equations (PDEs)<n>The framework consists of two key components: (a) a convolutional neural network (CNN)-based autoencoder architecture and (b) an autoregressive model composed of fully connected layers.
arXiv Detail & Related papers (2024-08-26T17:50:47Z) - FFHFlow: A Flow-based Variational Approach for Learning Diverse Dexterous Grasps with Shape-Aware Introspection [19.308304984645684]
We introduce a novel model that can generate diverse grasps for a multi-fingered hand.
The proposed idea gains superior performance and higher run-time efficiency against strong baselines.
We also demonstrate substantial benefits of greater diversity for grasping objects in clutter and a confined workspace in the real world.
arXiv Detail & Related papers (2024-07-21T13:33:08Z) - AROMA: Preserving Spatial Structure for Latent PDE Modeling with Local Neural Fields [14.219495227765671]
We present AROMA, a framework designed to enhance the modeling of partial differential equations (PDEs) using local neural fields.
Our flexible encoder-decoder architecture can obtain smooth latent representations of spatial physical fields from a variety of data types.
By employing a diffusion-based formulation, we achieve greater stability and enable longer rollouts compared to conventional MSE training.
arXiv Detail & Related papers (2024-06-04T10:12:09Z) - Unleashing Network Potentials for Semantic Scene Completion [50.95486458217653]
This paper proposes a novel SSC framework - Adrial Modality Modulation Network (AMMNet)
AMMNet introduces two core modules: a cross-modal modulation enabling the interdependence of gradient flows between modalities, and a customized adversarial training scheme leveraging dynamic gradient competition.
Extensive experimental results demonstrate that AMMNet outperforms state-of-the-art SSC methods by a large margin.
arXiv Detail & Related papers (2024-03-12T11:48:49Z) - Motion-Aware Video Frame Interpolation [49.49668436390514]
We introduce a Motion-Aware Video Frame Interpolation (MA-VFI) network, which directly estimates intermediate optical flow from consecutive frames.
It not only extracts global semantic relationships and spatial details from input frames with different receptive fields, but also effectively reduces the required computational cost and complexity.
arXiv Detail & Related papers (2024-02-05T11:00:14Z) - Transformers Learn Nonlinear Features In Context: Nonconvex Mean-field Dynamics on the Attention Landscape [40.78854925996]
Large language models based on the Transformer architecture have demonstrated impressive ability to learn in context.
We show that a common nonlinear representation or feature map can be used to enhance power of in-context learning.
arXiv Detail & Related papers (2024-02-02T09:29:40Z) - Reflected Schr\"odinger Bridge for Constrained Generative Modeling [16.72888494254555]
Reflected diffusion models have become the go-to method for large-scale generative models in real-world applications.
We introduce the Reflected Schrodinger Bridge algorithm: an entropy-regularized optimal transport approach tailored generating data within diverse bounded domains.
Our algorithm yields robust generative modeling in diverse domains, and its scalability is demonstrated in real-world constrained generative modeling through standard image benchmarks.
arXiv Detail & Related papers (2024-01-06T14:39:58Z) - Ensemble Kalman Filtering Meets Gaussian Process SSM for Non-Mean-Field and Online Inference [47.460898983429374]
We introduce an ensemble Kalman filter (EnKF) into the non-mean-field (NMF) variational inference framework to approximate the posterior distribution of the latent states.
This novel marriage between EnKF and GPSSM not only eliminates the need for extensive parameterization in learning variational distributions, but also enables an interpretable, closed-form approximation of the evidence lower bound (ELBO)
We demonstrate that the resulting EnKF-aided online algorithm embodies a principled objective function by ensuring data-fitting accuracy while incorporating model regularizations to mitigate overfitting.
arXiv Detail & Related papers (2023-12-10T15:22:30Z) - EmerNeRF: Emergent Spatial-Temporal Scene Decomposition via
Self-Supervision [85.17951804790515]
EmerNeRF is a simple yet powerful approach for learning spatial-temporal representations of dynamic driving scenes.
It simultaneously captures scene geometry, appearance, motion, and semantics via self-bootstrapping.
Our method achieves state-of-the-art performance in sensor simulation.
arXiv Detail & Related papers (2023-11-03T17:59:55Z) - Latent Traversals in Generative Models as Potential Flows [113.4232528843775]
We propose to model latent structures with a learned dynamic potential landscape.
Inspired by physics, optimal transport, and neuroscience, these potential landscapes are learned as physically realistic partial differential equations.
Our method achieves both more qualitatively and quantitatively disentangled trajectories than state-of-the-art baselines.
arXiv Detail & Related papers (2023-04-25T15:53:45Z) - Guaranteed Conservation of Momentum for Learning Particle-based Fluid
Dynamics [96.9177297872723]
We present a novel method for guaranteeing linear momentum in learned physics simulations.
We enforce conservation of momentum with a hard constraint, which we realize via antisymmetrical continuous convolutional layers.
In combination, the proposed method allows us to increase the physical accuracy of the learned simulator substantially.
arXiv Detail & Related papers (2022-10-12T09:12:59Z) - Cogradient Descent for Bilinear Optimization [124.45816011848096]
We introduce a Cogradient Descent algorithm (CoGD) to address the bilinear problem.
We solve one variable by considering its coupling relationship with the other, leading to a synchronous gradient descent.
Our algorithm is applied to solve problems with one variable under the sparsity constraint.
arXiv Detail & Related papers (2020-06-16T13:41:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.