論文の概要: Cascaded Scaling Classifier: class incremental learning with probability
scaling
- arxiv url: http://arxiv.org/abs/2402.01262v1
- Date: Fri, 2 Feb 2024 09:33:07 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-05 16:01:59.385322
- Title: Cascaded Scaling Classifier: class incremental learning with probability
scaling
- Title(参考訳): カスケードスケーリング分類器:確率スケーリングによるクラスインクリメンタル学習
- Authors: Jary Pomponi, Alessio Devoto, Simone Scardapane
- Abstract要約: 本稿では, Margin Dampening と Cascaded Scaling という新たな漸進正規化手法を提案する。
1つ目は、ソフト制約と知識蒸留のアプローチを組み合わせて、過去の知識を保存し、新しいパターンを忘れることを可能にします。
提案手法は,複数のベンチマークにおいて,確立されたベースラインで良好に動作することを示す。
- 参考スコア(独自算出の注目度): 4.816581623191151
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Humans are capable of acquiring new knowledge and transferring learned
knowledge into different domains, incurring a small forgetting. The same
ability, called Continual Learning, is challenging to achieve when operating
with neural networks due to the forgetting affecting past learned tasks when
learning new ones. This forgetting can be mitigated by replaying stored samples
from past tasks, but a large memory size may be needed for long sequences of
tasks; moreover, this could lead to overfitting on saved samples. In this
paper, we propose a novel regularisation approach and a novel incremental
classifier called, respectively, Margin Dampening and Cascaded Scaling
Classifier. The first combines a soft constraint and a knowledge distillation
approach to preserve past learned knowledge while allowing the model to learn
new patterns effectively. The latter is a gated incremental classifier, helping
the model modify past predictions without directly interfering with them. This
is achieved by modifying the output of the model with auxiliary scaling
functions. We empirically show that our approach performs well on multiple
benchmarks against well-established baselines, and we also study each component
of our proposal and how the combinations of such components affect the final
results.
- Abstract(参考訳): 人間は新しい知識を取得し、学習した知識を異なる領域に移し、少し忘れてしまう。
連続学習(Continuous Learning)と呼ばれる同じ能力は、ニューラルネットワークで操作する場合、新しいものを学ぶときの過去の学習タスクの影響を忘れてしまうため、実現が難しい。
これは過去のタスクから保存されたサンプルを再生することで緩和できるが、長いタスクのシーケンスには大きなメモリサイズが必要になる可能性がある。
本稿では,新しい正規化手法と,マージン減衰法とカスケードスケーリング分類法という新しいインクリメンタル分類法を提案する。
まず、ソフト制約と知識蒸留アプローチを組み合わせて過去の知識を保存し、モデルが新しいパターンを効果的に学習できるようにする。
後者はゲートインクリメンタルな分類器で、モデルが直接干渉することなく過去の予測を変更するのに役立つ。
これはモデルの出力を補助スケーリング関数で変更することで実現される。
我々は,提案手法が確立されたベースラインに対して複数のベンチマークで良好に動作することを示すとともに,提案手法のそれぞれのコンポーネントと,それらの組み合わせが最終的な結果に与える影響についても検討する。
関連論文リスト
- Rethinking Classifier Re-Training in Long-Tailed Recognition: A Simple
Logits Retargeting Approach [102.0769560460338]
我々は,クラスごとのサンプル数に関する事前知識を必要とせず,シンプルなロジットアプローチ(LORT)を開発した。
提案手法は,CIFAR100-LT, ImageNet-LT, iNaturalist 2018など,様々な不均衡データセットの最先端性能を実現する。
論文 参考訳(メタデータ) (2024-03-01T03:27:08Z) - Enhancing Consistency and Mitigating Bias: A Data Replay Approach for
Incremental Learning [100.7407460674153]
ディープラーニングシステムは、一連のタスクから学ぶとき、破滅的な忘れがちだ。
問題を緩和するため、新しいタスクを学ぶ際に経験豊富なタスクのデータを再生する手法が提案されている。
しかし、メモリ制約やデータプライバシーの問題を考慮すると、実際には期待できない。
代替として、分類モデルからサンプルを反転させることにより、データフリーなデータ再生法を提案する。
論文 参考訳(メタデータ) (2024-01-12T12:51:12Z) - Complementary Learning Subnetworks for Parameter-Efficient
Class-Incremental Learning [40.13416912075668]
本稿では,2つの補完学習サブネットワークス間のシナジーを通じて連続的に学習するリハーサルフリーなCILアプローチを提案する。
提案手法は, 精度向上, メモリコスト, トレーニング効率, タスク順序など, 最先端手法と競合する結果が得られる。
論文 参考訳(メタデータ) (2023-06-21T01:43:25Z) - Cross-Class Feature Augmentation for Class Incremental Learning [45.91253737682168]
本稿では,敵対的攻撃を動機とした機能強化手法を取り入れた新しいクラスインクリメンタルラーニング手法を提案する。
提案手法は,任意の対象クラスの特徴を増大させるため,クラスインクリメンタルラーニングにおける従来の知識を活用するためのユニークな視点を持つ。
提案手法は,様々なシナリオにおいて,既存の段階的学習手法を著しく上回っている。
論文 参考訳(メタデータ) (2023-04-04T15:48:09Z) - A Memory Transformer Network for Incremental Learning [64.0410375349852]
本研究では,モデルが学習する時間とともに,新しいデータクラスが観察される学習環境であるクラスインクリメンタルラーニングについて検討する。
素直な問題定式化にもかかわらず、クラス増分学習への分類モデルの素直な適用は、これまで見られたクラスの「破滅的な忘れ込み」をもたらす。
これは、過去のデータのサブセットをメモリバンクに保存し、将来のタスクをトレーニングする際の忘れの防止にそれを活用することで、破滅的な忘れの問題を克服するものだ。
論文 参考訳(メタデータ) (2022-10-10T08:27:28Z) - On Generalizing Beyond Domains in Cross-Domain Continual Learning [91.56748415975683]
ディープニューラルネットワークは、新しいタスクを学んだ後、これまで学んだ知識の破滅的な忘れ込みに悩まされることが多い。
提案手法は、ドメインシフト中の新しいタスクを精度良く学習することで、DomainNetやOfficeHomeといった挑戦的なデータセットで最大10%向上する。
論文 参考訳(メタデータ) (2022-03-08T09:57:48Z) - BatchFormer: Learning to Explore Sample Relationships for Robust
Representation Learning [93.38239238988719]
本稿では,各ミニバッチからサンプル関係を学習可能なディープニューラルネットワークを提案する。
BatchFormerは各ミニバッチのバッチ次元に適用され、トレーニング中のサンプル関係を暗黙的に探索する。
我々は10以上のデータセットに対して広範な実験を行い、提案手法は異なるデータ不足アプリケーションにおいて大幅な改善を実現する。
論文 参考訳(メタデータ) (2022-03-03T05:31:33Z) - Optimizing Active Learning for Low Annotation Budgets [6.753808772846254]
ディープラーニングでは、アクティブな学習は通常、微調整によって連続した深層モデルを更新する反復的なプロセスとして実装される。
移行学習にインスパイアされたアプローチを用いてこの問題に対処する。
本稿では,ALプロセスの反復性を利用してより堅牢なサンプルを抽出する新しい取得関数を提案する。
論文 参考訳(メタデータ) (2022-01-18T18:53:10Z) - Active Learning for Sequence Tagging with Deep Pre-trained Models and
Bayesian Uncertainty Estimates [52.164757178369804]
自然言語処理のためのトランスファーラーニングとアクティブラーニングの最近の進歩は、必要なアノテーション予算を大幅に削減する可能性を開く。
我々は,様々なベイズ不確実性推定手法とモンテカルロドロップアウトオプションの実験的研究を,アクティブ学習フレームワークで実施する。
また, 能動学習中にインスタンスを取得するためには, 完全サイズのトランスフォーマーを蒸留版に置き換えることにより, 計算性能が向上することを示した。
論文 参考訳(メタデータ) (2021-01-20T13:59:25Z) - Class-incremental Learning with Pre-allocated Fixed Classifiers [20.74548175713497]
クラス増分学習では、学習エージェントは、前のクラスを忘れずに新しいクラスを学ぶことを目標として、データのストリームに直面します。
本稿では,複数の事前配置された出力ノードが学習フェーズの開始時から,その分類損失に正しく対応できる新しい固定分類器を提案する。
論文 参考訳(メタデータ) (2020-10-16T22:40:28Z) - Two-Level Residual Distillation based Triple Network for Incremental
Object Detection [21.725878050355824]
本稿では,より高速なR-CNNに基づく新しいインクリメンタルオブジェクト検出手法を提案する。
従来の学習知識を忘れることなく、新しいクラスでの漸進的なモデル学習を支援するためのアシスタントとして、古いモデルと残留モデルを使用する三重ネットワークである。
論文 参考訳(メタデータ) (2020-07-27T11:04:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。