KTO: Model Alignment as Prospect Theoretic Optimization
- URL: http://arxiv.org/abs/2402.01306v3
- Date: Tue, 3 Sep 2024 07:41:51 GMT
- Title: KTO: Model Alignment as Prospect Theoretic Optimization
- Authors: Kawin Ethayarajh, Winnie Xu, Niklas Muennighoff, Dan Jurafsky, Douwe Kiela,
- Abstract summary: Kahneman & Tversky's $textitprospect theory$ tells us that humans perceive random variables in a biased but well-defined manner.
We show that objectives for aligning LLMs with human feedback implicitly incorporate many of these biases.
We propose a HALO that directly maximizes the utility of generations instead of maximizing the log-likelihood of preferences.
- Score: 67.44320255397506
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Kahneman & Tversky's $\textit{prospect theory}$ tells us that humans perceive random variables in a biased but well-defined manner (1992); for example, humans are famously loss-averse. We show that objectives for aligning LLMs with human feedback implicitly incorporate many of these biases -- the success of these objectives (e.g., DPO) over cross-entropy minimization can partly be ascribed to them belonging to a family of loss functions that we call $\textit{human-aware losses}$ (HALOs). However, the utility functions these methods attribute to humans still differ from those in the prospect theory literature. Using a Kahneman-Tversky model of human utility, we propose a HALO that directly maximizes the utility of generations instead of maximizing the log-likelihood of preferences, as current methods do. We call this approach KTO, and it matches or exceeds the performance of preference-based methods at scales from 1B to 30B, despite only learning from a binary signal of whether an output is desirable. More broadly, our work suggests that there is no one HALO that is universally superior; the best loss depends on the inductive biases most appropriate for a given setting, an oft-overlooked consideration.
Related papers
- Optimal Design for Reward Modeling in RLHF [83.3614658277817]
We formalize the reward training model in Reinforcement Learning from Human Feedback.
We frame the selection of an effective dataset as a simple regret minimization task.
We derive bounds on the simple regret under appropriate assumptions.
arXiv Detail & Related papers (2024-10-22T14:36:44Z) - Self-supervised Preference Optimization: Enhance Your Language Model with Preference Degree Awareness [27.43137305486112]
We propose a novel Self-supervised Preference Optimization (SPO) framework, which constructs a self-supervised preference degree loss combined with the alignment loss.
The results demonstrate that SPO can be seamlessly integrated with existing preference optimization methods to achieve state-of-the-art performance.
arXiv Detail & Related papers (2024-09-26T12:37:26Z) - Averaging log-likelihoods in direct alignment [43.77763433288893]
We introduce a new averaging operator to be composed with the optimality operator giving the best policy for the underlying RL problem.
We empirically study the effect of such averaging, observing a trade-off between the length of generations and their scores.
arXiv Detail & Related papers (2024-06-27T14:07:38Z) - Robust Reinforcement Learning from Corrupted Human Feedback [86.17030012828003]
Reinforcement learning from human feedback (RLHF) provides a principled framework for aligning AI systems with human preference data.
We propose a robust RLHF approach -- $R3M$, which models the potentially corrupted preference label as sparse outliers.
Our experiments on robotic control and natural language generation with large language models (LLMs) show that $R3M$ improves robustness of the reward against several types of perturbations to the preference data.
arXiv Detail & Related papers (2024-06-21T18:06:30Z) - Contrastive Preference Learning: Learning from Human Feedback without RL [71.77024922527642]
We introduce Contrastive Preference Learning (CPL), an algorithm for learning optimal policies from preferences without learning reward functions.
CPL is fully off-policy, uses only a simple contrastive objective, and can be applied to arbitrary MDPs.
arXiv Detail & Related papers (2023-10-20T16:37:56Z) - Learning Optimal Advantage from Preferences and Mistaking it for Reward [43.58066500250688]
Most recent work assumes that human preferences are generated based only upon the reward accrued within those segments, or their partial return.
We investigate the consequences of assuming preferences are based upon partial return when they actually arise from regret.
This paper overall provides insight regarding why learning under the partial return preference model tends to work so well in practice, despite it conforming poorly to how humans give preferences.
arXiv Detail & Related papers (2023-10-03T21:58:24Z) - Reinforcement Learning with Human Feedback: Learning Dynamic Choices via
Pessimism [91.52263068880484]
We study offline Reinforcement Learning with Human Feedback (RLHF)
We aim to learn the human's underlying reward and the MDP's optimal policy from a set of trajectories induced by human choices.
RLHF is challenging for multiple reasons: large state space but limited human feedback, the bounded rationality of human decisions, and the off-policy distribution shift.
arXiv Detail & Related papers (2023-05-29T01:18:39Z) - Human-in-the-loop: Provably Efficient Preference-based Reinforcement
Learning with General Function Approximation [107.54516740713969]
We study human-in-the-loop reinforcement learning (RL) with trajectory preferences.
Instead of receiving a numeric reward at each step, the agent only receives preferences over trajectory pairs from a human overseer.
We propose the first optimistic model-based algorithm for PbRL with general function approximation.
arXiv Detail & Related papers (2022-05-23T09:03:24Z) - A Generalised Inverse Reinforcement Learning Framework [24.316047317028147]
inverse Reinforcement Learning (IRL) is to estimate the unknown cost function of some MDP base on observed trajectories.
We introduce an alternative training loss that puts more weights on future states which yields a reformulation of the (maximum entropy) IRL problem.
The algorithms we devised exhibit enhanced performances (and similar tractability) than off-the-shelf ones in multiple OpenAI gym environments.
arXiv Detail & Related papers (2021-05-25T10:30:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.