A Review of Quantum communication using high-dimensional Hilbert spaces
- URL: http://arxiv.org/abs/2402.01319v1
- Date: Fri, 2 Feb 2024 11:17:35 GMT
- Title: A Review of Quantum communication using high-dimensional Hilbert spaces
- Authors: Yuval Idan and Avihai Didi
- Abstract summary: In this project we examine several different quantum key distribution protocols which we divide into ones utilizing qubits whose Hilbert spaces are two dimensional.
In the papers we'll examine are implemented using the orbital angular momentum of twisted photons.
In section [7] we present a unified view of all the relevant data for the different protocols, and argue for the benefits and drawbacks of the different protocols for different applications.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this project we examine several different quantum key distribution
protocols which we divide into ones utilizing qubits whose Hilbert spaces are
two dimensional and ones whose Hilbert space dimension is greater than two,
these units of data in quantum computers are known as qudits and in the papers
we'll examine are implemented using the orbital angular momentum of twisted
photons. In sections [3] and [4] the specific procedures of each protocol are
briefly described and followed by an examination of the theoretical and
experimental merits of each protocol. These merits are measured in the bit
error rate tolerance $e_b$, which quantifies the maximum channel noise and the
key rate $R$ which quantifies the rate at which data is transferred in the
protocol. In section [7] we present a unified view of all the relevant data for
the different protocols, and argue for the benefits and drawbacks of the
different protocols for different applications.
Related papers
- Separable Power of Classical and Quantum Learning Protocols Through the Lens of No-Free-Lunch Theorem [70.42372213666553]
The No-Free-Lunch (NFL) theorem quantifies problem- and data-independent generalization errors regardless of the optimization process.
We categorize a diverse array of quantum learning algorithms into three learning protocols designed for learning quantum dynamics under a specified observable.
Our derived NFL theorems demonstrate quadratic reductions in sample complexity across CLC-LPs, ReQu-LPs, and Qu-LPs.
We attribute this performance discrepancy to the unique capacity of quantum-related learning protocols to indirectly utilize information concerning the global phases of non-orthogonal quantum states.
arXiv Detail & Related papers (2024-05-12T09:05:13Z) - Simulating Gaussian boson sampling quantum computers [68.8204255655161]
We briefly review recent theoretical methods to simulate experimental Gaussian boson sampling networks.
We focus mostly on methods that use phase-space representations of quantum mechanics.
A brief overview of the theory of GBS, recent experiments and other types of methods are also presented.
arXiv Detail & Related papers (2023-08-02T02:03:31Z) - Boosted quantum and semi-quantum communication protocols [0.0]
We show that it is possible to reduce the number of such runs by a suitable design of the key generation rule.
We illustrate this advantage by proposing quantum and semi-quantum key distribution protocols.
arXiv Detail & Related papers (2023-03-24T12:33:22Z) - Multi-User Entanglement Distribution in Quantum Networks Using Multipath
Routing [55.2480439325792]
We propose three protocols that increase the entanglement rate of multi-user applications by leveraging multipath routing.
The protocols are evaluated on quantum networks with NISQ constraints, including limited quantum memories and probabilistic entanglement generation.
arXiv Detail & Related papers (2023-03-06T18:06:00Z) - Entanglement distribution with minimal memory requirements using
time-bin photonic qudits [0.0]
We propose a novel protocol based on $2m$-dimensional time-bin photonic qudits.
By adopting the qudit protocol, the required qubit memory time is independent of the transmission loss between the nodes.
Our protocol can significantly boost the performance of near-term quantum networks.
arXiv Detail & Related papers (2022-10-29T09:23:04Z) - Conference key agreement in a quantum network [67.410870290301]
Quantum conference key agreement (QCKA) allows multiple users to establish a secure key from a shared multi-partite entangled state.
In a quantum network, this protocol can be efficiently implemented using a single copy of a N-qubit Greenberger-Horne-Zeilinger (GHZ) state to distil a secure N-user conference key bit.
arXiv Detail & Related papers (2022-07-04T18:00:07Z) - Efficient Bipartite Entanglement Detection Scheme with a Quantum
Adversarial Solver [89.80359585967642]
Proposal reformulates the bipartite entanglement detection as a two-player zero-sum game completed by parameterized quantum circuits.
We experimentally implement our protocol on a linear optical network and exhibit its effectiveness to accomplish the bipartite entanglement detection for 5-qubit quantum pure states and 2-qubit quantum mixed states.
arXiv Detail & Related papers (2022-03-15T09:46:45Z) - Security of a High Dimensional Two-Way Quantum Key Distribution Protocol [1.827510863075184]
Two-way quantum key distribution protocols utilize bi-directional quantum communication to establish a shared secret key.
We investigate a high-dimensional variant of the Ping Pong protocol and perform an information theoretic security analysis in the finite-key setting.
arXiv Detail & Related papers (2022-03-06T15:36:54Z) - Quantum map approach to entanglement transfer and generation in spin
chains [0.0]
Quantum information processing protocols are efficiently implemented on spin-$frac12$ networks.
We reformulate widely investigated protocols, such as one-qubit quantum state transfer and two-qubit entanglement distribution, with the quantum map formalism.
arXiv Detail & Related papers (2021-12-04T14:32:26Z) - Round-robin differential phase-time-shifting protocol for quantum key
distribution: theory and experiment [58.03659958248968]
Quantum key distribution (QKD) allows the establishment of common cryptographic keys among distant parties.
Recently, a QKD protocol that circumvents the need for monitoring signal disturbance, has been proposed and demonstrated in initial experiments.
We derive the security proofs of the round-robin differential phase-time-shifting protocol in the collective attack scenario.
Our results show that the RRDPTS protocol can achieve higher secret key rate in comparison with the RRDPS, in the condition of high quantum bit error rate.
arXiv Detail & Related papers (2021-03-15T15:20:09Z) - Two-party quantum private comparison based on eight-qubit entangled
state [0.7130302992490973]
The purpose of quantum private comparison (QPC) is to solve "Tierce problem" using quantum mechanics laws.
We consider for the first time the usefulness of eight-qubit entangled states for QPC by proposing a new protocol.
arXiv Detail & Related papers (2021-01-05T12:07:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.