Supervised Algorithmic Fairness in Distribution Shifts: A Survey
- URL: http://arxiv.org/abs/2402.01327v3
- Date: Sun, 5 May 2024 01:01:03 GMT
- Title: Supervised Algorithmic Fairness in Distribution Shifts: A Survey
- Authors: Minglai Shao, Dong Li, Chen Zhao, Xintao Wu, Yujie Lin, Qin Tian,
- Abstract summary: In real-world applications, machine learning models are often trained on a specific dataset but deployed in environments where the data distribution may shift.
This shift can lead to unfair predictions, disproportionately affecting certain groups characterized by sensitive attributes, such as race and gender.
- Score: 17.826312801085052
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Supervised fairness-aware machine learning under distribution shifts is an emerging field that addresses the challenge of maintaining equitable and unbiased predictions when faced with changes in data distributions from source to target domains. In real-world applications, machine learning models are often trained on a specific dataset but deployed in environments where the data distribution may shift over time due to various factors. This shift can lead to unfair predictions, disproportionately affecting certain groups characterized by sensitive attributes, such as race and gender. In this survey, we provide a summary of various types of distribution shifts and comprehensively investigate existing methods based on these shifts, highlighting six commonly used approaches in the literature. Additionally, this survey lists publicly available datasets and evaluation metrics for empirical studies. We further explore the interconnection with related research fields, discuss the significant challenges, and identify potential directions for future studies.
Related papers
- A Survey of Deep Graph Learning under Distribution Shifts: from Graph Out-of-Distribution Generalization to Adaptation [59.14165404728197]
We provide an up-to-date and forward-looking review of deep graph learning under distribution shifts.
Specifically, we cover three primary scenarios: graph OOD generalization, training-time graph OOD adaptation, and test-time graph OOD adaptation.
To provide a better understanding of the literature, we systematically categorize the existing models based on our proposed taxonomy.
arXiv Detail & Related papers (2024-10-25T02:39:56Z) - Online Model-based Anomaly Detection in Multivariate Time Series: Taxonomy, Survey, Research Challenges and Future Directions [0.017476232824732776]
Time-series anomaly detection plays an important role in engineering processes.
This survey introduces a novel taxonomy where a distinction between online and offline, and training and inference is made.
It presents the most popular data sets and evaluation metrics used in the literature, as well as a detailed analysis.
arXiv Detail & Related papers (2024-08-07T13:01:10Z) - Tackling Diverse Minorities in Imbalanced Classification [80.78227787608714]
Imbalanced datasets are commonly observed in various real-world applications, presenting significant challenges in training classifiers.
We propose generating synthetic samples iteratively by mixing data samples from both minority and majority classes.
We demonstrate the effectiveness of our proposed framework through extensive experiments conducted on seven publicly available benchmark datasets.
arXiv Detail & Related papers (2023-08-28T18:48:34Z) - Statistical Inference Under Constrained Selection Bias [20.862583584531322]
We propose a framework that enables statistical inference in the presence of selection bias.
The output is high-probability bounds on the value of an estimand for the target distribution.
We analyze the computational and statistical properties of methods to estimate these bounds and show that our method can produce informative bounds on a variety of simulated and semisynthetic tasks.
arXiv Detail & Related papers (2023-06-05T23:05:26Z) - A Comprehensive Review of Trends, Applications and Challenges In
Out-of-Distribution Detection [0.76146285961466]
Field of study has emerged, focusing on detecting out-of-distribution data subsets and enabling a more comprehensive generalization.
As many deep learning based models have achieved near-perfect results on benchmark datasets, the need to evaluate these models' reliability and trustworthiness is felt more strongly than ever.
This paper presents a survey that, in addition to reviewing more than 70 papers in this field, presents challenges and directions for future works and offers a unifying look into various types of data shifts and solutions for better generalization.
arXiv Detail & Related papers (2022-09-26T18:13:14Z) - Context matters for fairness -- a case study on the effect of spatial
distribution shifts [10.351739012146378]
We present a case study on the newly released American Census datasets.
We show how remarkably can spatial distribution shifts affect predictive- and fairness-related performance of a model.
Our study suggests that robustness to distribution shifts is necessary before deploying a model to another context.
arXiv Detail & Related papers (2022-06-23T01:09:46Z) - Learning from Heterogeneous Data Based on Social Interactions over
Graphs [58.34060409467834]
This work proposes a decentralized architecture, where individual agents aim at solving a classification problem while observing streaming features of different dimensions.
We show that the.
strategy enables the agents to learn consistently under this highly-heterogeneous setting.
We show that the.
strategy enables the agents to learn consistently under this highly-heterogeneous setting.
arXiv Detail & Related papers (2021-12-17T12:47:18Z) - VisDA-2021 Competition Universal Domain Adaptation to Improve
Performance on Out-of-Distribution Data [64.91713686654805]
The Visual Domain Adaptation (VisDA) 2021 competition tests models' ability to adapt to novel test distributions.
We will evaluate adaptation to novel viewpoints, backgrounds, modalities and degradation in quality.
Performance will be measured using a rigorous protocol, comparing to state-of-the-art domain adaptation methods.
arXiv Detail & Related papers (2021-07-23T03:21:51Z) - Predicting with Confidence on Unseen Distributions [90.68414180153897]
We connect domain adaptation and predictive uncertainty literature to predict model accuracy on challenging unseen distributions.
We find that the difference of confidences (DoC) of a classifier's predictions successfully estimates the classifier's performance change over a variety of shifts.
We specifically investigate the distinction between synthetic and natural distribution shifts and observe that despite its simplicity DoC consistently outperforms other quantifications of distributional difference.
arXiv Detail & Related papers (2021-07-07T15:50:18Z) - An Information-theoretic Approach to Distribution Shifts [9.475039534437332]
Safely deploying machine learning models to the real world is often a challenging process.
Models trained with data obtained from a specific geographic location tend to fail when queried with data obtained elsewhere.
neural networks that are fit to a subset of the population might carry some selection bias into their decision process.
arXiv Detail & Related papers (2021-06-07T16:44:21Z) - Through the Data Management Lens: Experimental Analysis and Evaluation
of Fair Classification [75.49600684537117]
Data management research is showing an increasing presence and interest in topics related to data and algorithmic fairness.
We contribute a broad analysis of 13 fair classification approaches and additional variants, over their correctness, fairness, efficiency, scalability, and stability.
Our analysis highlights novel insights on the impact of different metrics and high-level approach characteristics on different aspects of performance.
arXiv Detail & Related papers (2021-01-18T22:55:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.