Context matters for fairness -- a case study on the effect of spatial
distribution shifts
- URL: http://arxiv.org/abs/2206.11436v2
- Date: Fri, 24 Jun 2022 21:09:45 GMT
- Title: Context matters for fairness -- a case study on the effect of spatial
distribution shifts
- Authors: Siamak Ghodsi, Harith Alani, and Eirini Ntoutsi
- Abstract summary: We present a case study on the newly released American Census datasets.
We show how remarkably can spatial distribution shifts affect predictive- and fairness-related performance of a model.
Our study suggests that robustness to distribution shifts is necessary before deploying a model to another context.
- Score: 10.351739012146378
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the ever growing involvement of data-driven AI-based decision making
technologies in our daily social lives, the fairness of these systems is
becoming a crucial phenomenon. However, an important and often challenging
aspect in utilizing such systems is to distinguish validity for the range of
their application especially under distribution shifts, i.e., when a model is
deployed on data with different distribution than the training set. In this
paper, we present a case study on the newly released American Census datasets,
a reconstruction of the popular Adult dataset, to illustrate the importance of
context for fairness and show how remarkably can spatial distribution shifts
affect predictive- and fairness-related performance of a model. The problem
persists for fairness-aware learning models with the effects of
context-specific fairness interventions differing across the states and
different population groups. Our study suggests that robustness to distribution
shifts is necessary before deploying a model to another context.
Related papers
- Supervised Algorithmic Fairness in Distribution Shifts: A Survey [17.826312801085052]
In real-world applications, machine learning models are often trained on a specific dataset but deployed in environments where the data distribution may shift.
This shift can lead to unfair predictions, disproportionately affecting certain groups characterized by sensitive attributes, such as race and gender.
arXiv Detail & Related papers (2024-02-02T11:26:18Z) - Enhancing Robustness of Foundation Model Representations under
Provenance-related Distribution Shifts [8.298173603769063]
We examine the stability of models based on foundation models under distribution shift.
We focus on confounding by provenance, a form of distribution shift that emerges in the context of multi-institutional datasets.
Results indicate that while foundation models do show some out-of-the-box robustness to confounding-by-provenance related distribution shifts, this can be improved through adjustment.
arXiv Detail & Related papers (2023-12-09T02:02:45Z) - Robust Computer Vision in an Ever-Changing World: A Survey of Techniques
for Tackling Distribution Shifts [20.17397328893533]
AI applications are becoming increasingly visible to the general public.
There is a notable gap between the theoretical assumptions researchers make about computer vision models and the reality those models face when deployed in the real world.
One of the critical reasons for this gap is a challenging problem known as distribution shift.
arXiv Detail & Related papers (2023-12-03T23:40:12Z) - Learning for Counterfactual Fairness from Observational Data [62.43249746968616]
Fairness-aware machine learning aims to eliminate biases of learning models against certain subgroups described by certain protected (sensitive) attributes such as race, gender, and age.
A prerequisite for existing methods to achieve counterfactual fairness is the prior human knowledge of the causal model for the data.
In this work, we address the problem of counterfactually fair prediction from observational data without given causal models by proposing a novel framework CLAIRE.
arXiv Detail & Related papers (2023-07-17T04:08:29Z) - Non-Invasive Fairness in Learning through the Lens of Data Drift [88.37640805363317]
We show how to improve the fairness of Machine Learning models without altering the data or the learning algorithm.
We use a simple but key insight: the divergence of trends between different populations, and, consecutively, between a learned model and minority populations, is analogous to data drift.
We explore two strategies (model-splitting and reweighing) to resolve this drift, aiming to improve the overall conformance of models to the underlying data.
arXiv Detail & Related papers (2023-03-30T17:30:42Z) - Learning Informative Representation for Fairness-aware Multivariate
Time-series Forecasting: A Group-based Perspective [50.093280002375984]
Performance unfairness among variables widely exists in multivariate time series (MTS) forecasting models.
We propose a novel framework, named FairFor, for fairness-aware MTS forecasting.
arXiv Detail & Related papers (2023-01-27T04:54:12Z) - Fair Inference for Discrete Latent Variable Models [12.558187319452657]
Machine learning models, trained on data without due care, often exhibit unfair and discriminatory behavior against certain populations.
We develop a fair variational inference technique for the discrete latent variables, which is accomplished by including a fairness penalty on the variational distribution.
To demonstrate the generality of our approach and its potential for real-world impact, we then develop a special-purpose graphical model for criminal justice risk assessments.
arXiv Detail & Related papers (2022-09-15T04:54:21Z) - Transferring Fairness under Distribution Shifts via Fair Consistency
Regularization [15.40257564187799]
We study how to transfer model fairness under distribution shifts, a widespread issue in practice.
Inspired by the success of self-training in transferring accuracy under domain shifts, we derive a sufficient condition for transferring group fairness.
arXiv Detail & Related papers (2022-06-26T06:19:56Z) - Learning from Heterogeneous Data Based on Social Interactions over
Graphs [58.34060409467834]
This work proposes a decentralized architecture, where individual agents aim at solving a classification problem while observing streaming features of different dimensions.
We show that the.
strategy enables the agents to learn consistently under this highly-heterogeneous setting.
We show that the.
strategy enables the agents to learn consistently under this highly-heterogeneous setting.
arXiv Detail & Related papers (2021-12-17T12:47:18Z) - Supercharging Imbalanced Data Learning With Energy-based Contrastive
Representation Transfer [72.5190560787569]
In computer vision, learning from long tailed datasets is a recurring theme, especially for natural image datasets.
Our proposal posits a meta-distributional scenario, where the data generating mechanism is invariant across the label-conditional feature distributions.
This allows us to leverage a causal data inflation procedure to enlarge the representation of minority classes.
arXiv Detail & Related papers (2020-11-25T00:13:11Z) - Accurate and Robust Feature Importance Estimation under Distribution
Shifts [49.58991359544005]
PRoFILE is a novel feature importance estimation method.
We show significant improvements over state-of-the-art approaches, both in terms of fidelity and robustness.
arXiv Detail & Related papers (2020-09-30T05:29:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.