Counterfactual Concept Bottleneck Models
- URL: http://arxiv.org/abs/2402.01408v2
- Date: Wed, 09 Oct 2024 12:57:37 GMT
- Title: Counterfactual Concept Bottleneck Models
- Authors: Gabriele Dominici, Pietro Barbiero, Francesco Giannini, Martin Gjoreski, Giuseppe Marra, Marc Langheinrich,
- Abstract summary: Current deep learning models are not designed to simultaneously address three fundamental questions.
We introduce CounterFactual Concept Bottleneck Models (CF-CBMs)
CF-CBMs achieve classification accuracy comparable to black-box models.
We show that training the counterfactual generator jointly with the CBM leads to two key improvements.
- Score: 12.912611528244858
- License:
- Abstract: Current deep learning models are not designed to simultaneously address three fundamental questions: predict class labels to solve a given classification task (the "What?"), simulate changes in the situation to evaluate how this impacts class predictions (the "How?"), and imagine how the scenario should change to result in different class predictions (the "Why not?"). The inability to answer these questions represents a crucial gap in deploying reliable AI agents, calibrating human trust, and improving human-machine interaction. To bridge this gap, we introduce CounterFactual Concept Bottleneck Models (CF-CBMs), a class of models designed to efficiently address the above queries all at once without the need to run post-hoc searches. Our experimental results demonstrate that CF-CBMs: achieve classification accuracy comparable to black-box models and existing CBMs ("What?"), rely on fewer important concepts leading to simpler explanations ("How?"), and produce interpretable, concept-based counterfactuals ("Why not?"). Additionally, we show that training the counterfactual generator jointly with the CBM leads to two key improvements: (i) it alters the model's decision-making process, making the model rely on fewer important concepts (leading to simpler explanations), and (ii) it significantly increases the causal effect of concept interventions on class predictions, making the model more responsive to these changes.
Related papers
- CoLa-DCE -- Concept-guided Latent Diffusion Counterfactual Explanations [2.3083192626377755]
We introduce Concept-guided Latent Diffusion Counterfactual Explanations (CoLa-DCE)
CoLa-DCE generates concept-guided counterfactuals for any classifier with a high degree of control regarding concept selection and spatial conditioning.
We demonstrate the advantages of our approach in minimality and comprehenibility across multiple image classification models and datasets.
arXiv Detail & Related papers (2024-06-03T14:27:46Z) - Improving Concept Alignment in Vision-Language Concept Bottleneck Models [9.228586820098723]
Concept Bottleneck Models (CBM) map images to human-interpretable concepts before making class predictions.
Recent approaches automate CBM construction by prompting Large Language Models (LLMs) to generate text concepts.
It is desired to build CBMs with concepts defined by human experts rather than LLM-generated ones.
arXiv Detail & Related papers (2024-05-03T03:02:00Z) - Auxiliary Losses for Learning Generalizable Concept-based Models [5.4066453042367435]
Concept Bottleneck Models (CBMs) have gained popularity since their introduction.
CBMs essentially limit the latent space of a model to human-understandable high-level concepts.
We propose cooperative-Concept Bottleneck Model (coop-CBM) to overcome the performance trade-off.
arXiv Detail & Related papers (2023-11-18T15:50:07Z) - VCNet: A self-explaining model for realistic counterfactual generation [52.77024349608834]
Counterfactual explanation is a class of methods to make local explanations of machine learning decisions.
We present VCNet-Variational Counter Net, a model architecture that combines a predictor and a counterfactual generator.
We show that VCNet is able to both generate predictions, and to generate counterfactual explanations without having to solve another minimisation problem.
arXiv Detail & Related papers (2022-12-21T08:45:32Z) - Neural Causal Models for Counterfactual Identification and Estimation [62.30444687707919]
We study the evaluation of counterfactual statements through neural models.
First, we show that neural causal models (NCMs) are expressive enough.
Second, we develop an algorithm for simultaneously identifying and estimating counterfactual distributions.
arXiv Detail & Related papers (2022-09-30T18:29:09Z) - Exploring the Trade-off between Plausibility, Change Intensity and
Adversarial Power in Counterfactual Explanations using Multi-objective
Optimization [73.89239820192894]
We argue that automated counterfactual generation should regard several aspects of the produced adversarial instances.
We present a novel framework for the generation of counterfactual examples.
arXiv Detail & Related papers (2022-05-20T15:02:53Z) - Explain, Edit, and Understand: Rethinking User Study Design for
Evaluating Model Explanations [97.91630330328815]
We conduct a crowdsourcing study, where participants interact with deception detection models that have been trained to distinguish between genuine and fake hotel reviews.
We observe that for a linear bag-of-words model, participants with access to the feature coefficients during training are able to cause a larger reduction in model confidence in the testing phase when compared to the no-explanation control.
arXiv Detail & Related papers (2021-12-17T18:29:56Z) - Beyond Trivial Counterfactual Explanations with Diverse Valuable
Explanations [64.85696493596821]
In computer vision applications, generative counterfactual methods indicate how to perturb a model's input to change its prediction.
We propose a counterfactual method that learns a perturbation in a disentangled latent space that is constrained using a diversity-enforcing loss.
Our model improves the success rate of producing high-quality valuable explanations when compared to previous state-of-the-art methods.
arXiv Detail & Related papers (2021-03-18T12:57:34Z) - Deducing neighborhoods of classes from a fitted model [68.8204255655161]
In this article a new kind of interpretable machine learning method is presented.
It can help to understand the partitioning of the feature space into predicted classes in a classification model using quantile shifts.
Basically, real data points (or specific points of interest) are used and the changes of the prediction after slightly raising or decreasing specific features are observed.
arXiv Detail & Related papers (2020-09-11T16:35:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.