Auxiliary Losses for Learning Generalizable Concept-based Models
- URL: http://arxiv.org/abs/2311.11108v1
- Date: Sat, 18 Nov 2023 15:50:07 GMT
- Title: Auxiliary Losses for Learning Generalizable Concept-based Models
- Authors: Ivaxi Sheth, Samira Ebrahimi Kahou
- Abstract summary: Concept Bottleneck Models (CBMs) have gained popularity since their introduction.
CBMs essentially limit the latent space of a model to human-understandable high-level concepts.
We propose cooperative-Concept Bottleneck Model (coop-CBM) to overcome the performance trade-off.
- Score: 5.4066453042367435
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The increasing use of neural networks in various applications has lead to
increasing apprehensions, underscoring the necessity to understand their
operations beyond mere final predictions. As a solution to enhance model
transparency, Concept Bottleneck Models (CBMs) have gained popularity since
their introduction. CBMs essentially limit the latent space of a model to
human-understandable high-level concepts. While beneficial, CBMs have been
reported to often learn irrelevant concept representations that consecutively
damage model performance. To overcome the performance trade-off, we propose
cooperative-Concept Bottleneck Model (coop-CBM). The concept representation of
our model is particularly meaningful when fine-grained concept labels are
absent. Furthermore, we introduce the concept orthogonal loss (COL) to
encourage the separation between the concept representations and to reduce the
intra-concept distance. This paper presents extensive experiments on real-world
datasets for image classification tasks, namely CUB, AwA2, CelebA and TIL. We
also study the performance of coop-CBM models under various distributional
shift settings. We show that our proposed method achieves higher accuracy in
all distributional shift settings even compared to the black-box models with
the highest concept accuracy.
Related papers
- How to Continually Adapt Text-to-Image Diffusion Models for Flexible Customization? [91.49559116493414]
We propose a novel Concept-Incremental text-to-image Diffusion Model (CIDM)
It can resolve catastrophic forgetting and concept neglect to learn new customization tasks in a concept-incremental manner.
Experiments validate that our CIDM surpasses existing custom diffusion models.
arXiv Detail & Related papers (2024-10-23T06:47:29Z) - Linking Robustness and Generalization: A k* Distribution Analysis of Concept Clustering in Latent Space for Vision Models [56.89974470863207]
This article uses the k* Distribution, a local neighborhood analysis method, to examine the learned latent space at the level of individual concepts.
We introduce skewness-based true and approximate metrics for interpreting individual concepts to assess the overall quality of vision models' latent space.
arXiv Detail & Related papers (2024-08-17T01:43:51Z) - Discover-then-Name: Task-Agnostic Concept Bottlenecks via Automated Concept Discovery [52.498055901649025]
Concept Bottleneck Models (CBMs) have been proposed to address the 'black-box' problem of deep neural networks.
We propose a novel CBM approach -- called Discover-then-Name-CBM (DN-CBM) -- that inverts the typical paradigm.
Our concept extraction strategy is efficient, since it is agnostic to the downstream task, and uses concepts already known to the model.
arXiv Detail & Related papers (2024-07-19T17:50:11Z) - Concept Bottleneck Models Without Predefined Concepts [26.156636891713745]
We introduce an input-dependent concept selection mechanism that ensures only a small subset of concepts is used across all classes.
We show that our approach improves downstream performance and narrows the performance gap to black-box models.
arXiv Detail & Related papers (2024-07-04T13:34:50Z) - Improving Intervention Efficacy via Concept Realignment in Concept Bottleneck Models [57.86303579812877]
Concept Bottleneck Models (CBMs) ground image classification on human-understandable concepts to allow for interpretable model decisions.
Existing approaches often require numerous human interventions per image to achieve strong performances.
We introduce a trainable concept realignment intervention module, which leverages concept relations to realign concept assignments post-intervention.
arXiv Detail & Related papers (2024-05-02T17:59:01Z) - Incremental Residual Concept Bottleneck Models [29.388549499546556]
Concept Bottleneck Models (CBMs) map the black-box visual representations extracted by deep neural networks onto a set of interpretable concepts.
We propose the Incremental Residual Concept Bottleneck Model (Res-CBM) to address the challenge of concept completeness.
Our approach can be applied to any user-defined concept bank, as a post-hoc processing method to enhance the performance of any CBMs.
arXiv Detail & Related papers (2024-04-13T12:02:19Z) - Sparse Concept Bottleneck Models: Gumbel Tricks in Contrastive Learning [86.15009879251386]
We propose a novel architecture and method of explainable classification with Concept Bottleneck Models (CBM)
CBMs require an additional set of concepts to leverage.
We show a significant increase in accuracy using sparse hidden layers in CLIP-based bottleneck models.
arXiv Detail & Related papers (2024-04-04T09:43:43Z) - Separable Multi-Concept Erasure from Diffusion Models [52.51972530398691]
We propose a Separable Multi-concept Eraser (SepME) to eliminate unsafe concepts from large-scale diffusion models.
The latter separates optimizable model weights, making each weight increment correspond to a specific concept erasure.
Extensive experiments indicate the efficacy of our approach in eliminating concepts, preserving model performance, and offering flexibility in the erasure or recovery of various concepts.
arXiv Detail & Related papers (2024-02-03T11:10:57Z) - Beyond Concept Bottleneck Models: How to Make Black Boxes Intervenable? [8.391254800873599]
We introduce a method to perform concept-based interventions on pretrained neural networks, which are not interpretable by design.
We formalise the notion of intervenability as a measure of the effectiveness of concept-based interventions and leverage this definition to fine-tune black boxes.
arXiv Detail & Related papers (2024-01-24T16:02:14Z) - I saw, I conceived, I concluded: Progressive Concepts as Bottlenecks [2.9398911304923447]
Concept bottleneck models (CBMs) provide explainability and intervention during inference by correcting predicted, intermediate concepts.
This makes CBMs attractive for high-stakes decision-making.
We take the quality assessment of fetal ultrasound scans as a real-life use case for CBM decision support in healthcare.
arXiv Detail & Related papers (2022-11-19T09:31:19Z) - Concept Bottleneck Model with Additional Unsupervised Concepts [0.5939410304994348]
We propose a novel interpretable model based on the concept bottleneck model (CBM)
CBM uses concept labels to train an intermediate layer as the additional visible layer.
By seamlessly training these two types of concepts while reducing the amount of computation, we can obtain both supervised and unsupervised concepts simultaneously.
arXiv Detail & Related papers (2022-02-03T08:30:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.