Safeguarding AI Agents: Developing and Analyzing Safety Architectures
- URL: http://arxiv.org/abs/2409.03793v2
- Date: Fri, 13 Sep 2024 08:14:36 GMT
- Title: Safeguarding AI Agents: Developing and Analyzing Safety Architectures
- Authors: Ishaan Domkundwar, Mukunda N S, Ishaan Bhola,
- Abstract summary: This paper addresses the need for safety measures in AI systems that collaborate with human teams.
We propose and evaluate three frameworks to enhance safety protocols in AI agent systems.
We conclude that these frameworks can significantly strengthen the safety and security of AI agent systems.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: AI agents, specifically powered by large language models, have demonstrated exceptional capabilities in various applications where precision and efficacy are necessary. However, these agents come with inherent risks, including the potential for unsafe or biased actions, vulnerability to adversarial attacks, lack of transparency, and tendency to generate hallucinations. As AI agents become more prevalent in critical sectors of the industry, the implementation of effective safety protocols becomes increasingly important. This paper addresses the critical need for safety measures in AI systems, especially ones that collaborate with human teams. We propose and evaluate three frameworks to enhance safety protocols in AI agent systems: an LLM-powered input-output filter, a safety agent integrated within the system, and a hierarchical delegation-based system with embedded safety checks. Our methodology involves implementing these frameworks and testing them against a set of unsafe agentic use cases, providing a comprehensive evaluation of their effectiveness in mitigating risks associated with AI agent deployment. We conclude that these frameworks can significantly strengthen the safety and security of AI agent systems, minimizing potential harmful actions or outputs. Our work contributes to the ongoing effort to create safe and reliable AI applications, particularly in automated operations, and provides a foundation for developing robust guardrails to ensure the responsible use of AI agents in real-world applications.
Related papers
- Multi-Agent Risks from Advanced AI [90.74347101431474]
Multi-agent systems of advanced AI pose novel and under-explored risks.
We identify three key failure modes based on agents' incentives, as well as seven key risk factors.
We highlight several important instances of each risk, as well as promising directions to help mitigate them.
arXiv Detail & Related papers (2025-02-19T23:03:21Z) - AGrail: A Lifelong Agent Guardrail with Effective and Adaptive Safety Detection [47.83354878065321]
We propose AGrail, a lifelong guardrail to enhance agent safety.
AGrail features adaptive safety check generation, effective safety check optimization, and tool compatibility and flexibility.
arXiv Detail & Related papers (2025-02-17T05:12:33Z) - Agent-SafetyBench: Evaluating the Safety of LLM Agents [72.92604341646691]
We introduce Agent-SafetyBench, a comprehensive benchmark to evaluate the safety of large language models (LLMs)
Agent-SafetyBench encompasses 349 interaction environments and 2,000 test cases, evaluating 8 categories of safety risks and covering 10 common failure modes frequently encountered in unsafe interactions.
Our evaluation of 16 popular LLM agents reveals a concerning result: none of the agents achieves a safety score above 60%.
arXiv Detail & Related papers (2024-12-19T02:35:15Z) - HAICOSYSTEM: An Ecosystem for Sandboxing Safety Risks in Human-AI Interactions [76.42274173122328]
We present HAICOSYSTEM, a framework examining AI agent safety within diverse and complex social interactions.
We run 1840 simulations based on 92 scenarios across seven domains (e.g., healthcare, finance, education)
Our experiments show that state-of-the-art LLMs, both proprietary and open-sourced, exhibit safety risks in over 50% cases.
arXiv Detail & Related papers (2024-09-24T19:47:21Z) - SafeEmbodAI: a Safety Framework for Mobile Robots in Embodied AI Systems [5.055705635181593]
Embodied AI systems, including AI-powered robots that autonomously interact with the physical world, stand to be significantly advanced.
Improper safety management can lead to failures in complex environments and make the system vulnerable to malicious command injections.
We propose textitSafeEmbodAI, a safety framework for integrating mobile robots into embodied AI systems.
arXiv Detail & Related papers (2024-09-03T05:56:50Z) - EARBench: Towards Evaluating Physical Risk Awareness for Task Planning of Foundation Model-based Embodied AI Agents [53.717918131568936]
Embodied artificial intelligence (EAI) integrates advanced AI models into physical entities for real-world interaction.
Foundation models as the "brain" of EAI agents for high-level task planning have shown promising results.
However, the deployment of these agents in physical environments presents significant safety challenges.
This study introduces EARBench, a novel framework for automated physical risk assessment in EAI scenarios.
arXiv Detail & Related papers (2024-08-08T13:19:37Z) - Security of AI Agents [5.468745160706382]
We identify and describe potential vulnerabilities in AI agents in detail from a system security perspective.
We introduce defense mechanisms corresponding to each vulnerability with design and experiments to evaluate their viability.
This paper contextualizes the security issues in the current development of AI agents and delineates methods to make AI agents safer and more reliable.
arXiv Detail & Related papers (2024-06-12T23:16:45Z) - AI Agents Under Threat: A Survey of Key Security Challenges and Future Pathways [10.16690494897609]
An Artificial Intelligence (AI) agent is a software entity that autonomously performs tasks or makes decisions based on pre-defined objectives and data inputs.
This survey delves into the emerging security threats faced by AI agents, categorizing them into four critical knowledge gaps.
By systematically reviewing these threats, this paper highlights both the progress made and the existing limitations in safeguarding AI agents.
arXiv Detail & Related papers (2024-06-04T01:22:31Z) - Towards Guaranteed Safe AI: A Framework for Ensuring Robust and Reliable AI Systems [88.80306881112313]
We will introduce and define a family of approaches to AI safety, which we will refer to as guaranteed safe (GS) AI.
The core feature of these approaches is that they aim to produce AI systems which are equipped with high-assurance quantitative safety guarantees.
We outline a number of approaches for creating each of these three core components, describe the main technical challenges, and suggest a number of potential solutions to them.
arXiv Detail & Related papers (2024-05-10T17:38:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.