Learning from Two Decades of Blood Pressure Data: Demography-Specific Patterns Across 75 Million Patient Encounters
- URL: http://arxiv.org/abs/2402.01598v3
- Date: Wed, 24 Apr 2024 03:35:27 GMT
- Title: Learning from Two Decades of Blood Pressure Data: Demography-Specific Patterns Across 75 Million Patient Encounters
- Authors: Seyedeh Somayyeh Mousavi, Yuting Guo, Abeed Sarker, Reza Sameni,
- Abstract summary: Hypertension is a global health concern with an increasing prevalence, underscoring the need for effective monitoring and analysis of blood pressure dynamics.
We analyzed a substantial BP dataset comprising 75,636,128 records from 2,054,462 unique patients collected between 2000 and 2022 at Emory Healthcare in Georgia, USA.
- Score: 3.416097871805964
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Hypertension is a global health concern with an increasing prevalence, underscoring the need for effective monitoring and analysis of blood pressure (BP) dynamics. We analyzed a substantial BP dataset comprising 75,636,128 records from 2,054,462 unique patients collected between 2000 and 2022 at Emory Healthcare in Georgia, USA, representing a demographically diverse population. We examined and compared population-wide statistics of bivariate changes in systolic BP (SBP) and diastolic BP (DBP) across sex, age, and race/ethnicity. The analysis revealed that males have higher BP levels than females and exhibit a distinct BP profile with age. Notably, average SBP consistently rises with age, whereas average DBP peaks in the forties age group. Among the ethnic groups studied, Blacks have marginally higher BPs and a greater standard deviation. We also discovered a significant correlation between SBP and DBP at the population level, a phenomenon not previously researched. These results emphasize the importance of demography-specific BP analysis for clinical diagnosis and provide valuable insights for developing personalized, demography-specific healthcare interventions.
Related papers
- A Multi-scenario Attention-based Generative Model for Personalized Blood Pressure Time Series Forecasting [6.311504297463515]
Continuous blood pressure (BP) monitoring is essential for timely diagnosis and intervention in critical care settings.
In this work, we propose a personalized BP forecasting model mainly using electrocardiogram (ECG) and photoplethysmogram ( photoplethysmogram) signals.
Experiments are conducted on datasets collected from three diverse scenarios with BP measurements from 60 subjects total.
arXiv Detail & Related papers (2024-09-07T04:24:15Z) - Using Pre-training and Interaction Modeling for ancestry-specific disease prediction in UK Biobank [69.90493129893112]
Recent genome-wide association studies (GWAS) have uncovered the genetic basis of complex traits, but show an under-representation of non-European descent individuals.
Here, we assess whether we can improve disease prediction across diverse ancestries using multiomic data.
arXiv Detail & Related papers (2024-04-26T16:39:50Z) - Leveraging Large Language Models for Analyzing Blood Pressure Variations
Across Biological Sex from Scientific Literature [3.731841514150172]
Hypertension, defined as blood pressure (BP) that is above normal, holds paramount significance in the realm of public health.
Existing BP measurement technologies and standards might be biased because they do not consider clinical outcomes, comorbidities, or demographic factors.
We employed GPT-35-turbo, a large language model (LLM), to automatically extract the mean and standard deviation values of BP for both males and females from a dataset comprising 25 million abstracts sourced from PubMed.
arXiv Detail & Related papers (2024-02-02T18:15:51Z) - A Finger on the Pulse of Cardiovascular Health: Estimating Blood Pressure with Smartphone Photoplethysmography-Based Pulse Waveform Analysis [2.4347312660509672]
This study introduces four innovative strategies to enhance smartphone-based photoplethysmography for blood pressure estimation (SPW-BP)
We employ often-neglected data-quality improvement techniques, such as height normalization, corrupt data removal, and boundary signal reconstruction.
Correlation and SHAP analysis identified key features for improving BP estimation.
However, Bland-Altman analysis revealed systematic biases, and MAE analysis showed that the results did not meet AAMI and BHS accuracy standards.
arXiv Detail & Related papers (2024-01-20T05:05:17Z) - Simulation-based Inference for Cardiovascular Models [57.92535897767929]
We use simulation-based inference to solve the inverse problem of mapping waveforms back to plausible physiological parameters.
We perform an in-silico uncertainty analysis of five biomarkers of clinical interest.
We study the gap between in-vivo and in-silico with the MIMIC-III waveform database.
arXiv Detail & Related papers (2023-07-26T02:34:57Z) - A Survey on Blood Pressure Measurement Technologies: Addressing
Potential Sources of Bias [4.0527913281804135]
Blood pressure (BP) monitoring plays a crucial role in the prevention, diagnosis, treatment, and management of cardiovascular diseases.
Recent guidelines advocate for regular BP monitoring as part of regular clinical visits or even at home.
BP measurements can demonstrate substantial biases and variances due to factors such as measurement and device errors, demographics, and body habitus.
arXiv Detail & Related papers (2023-06-14T11:51:11Z) - Evaluate underdiagnosis and overdiagnosis bias of deep learning model on
primary open-angle glaucoma diagnosis in under-served patient populations [64.91773761529183]
Primary open-angle glaucoma (POAG) is the leading cause of blindness in the United States.
Deep learning has been widely used to detect POAG using fundus images.
Human bias in clinical diagnosis may be reflected and amplified in the widely-used deep learning models.
arXiv Detail & Related papers (2023-01-26T18:53:09Z) - A Shallow U-Net Architecture for Reliably Predicting Blood Pressure (BP)
from Photoplethysmogram (PPG) and Electrocardiogram (ECG) Signals [1.1695966610359496]
Most existing methods used in the hospitals for continuous monitoring of Blood Pressure (BP) are invasive.
In this study, we explored the applicability of autoencoders in predicting BP from non-invasively collectible signals such as Photoplethysmogram ( PPG) and ECG signals.
It was found that a very shallow, one-dimensional autoencoder can extract the relevant features to predict the SBP and DBP with the state-of-the-art performance on a very large dataset.
arXiv Detail & Related papers (2021-11-12T19:34:20Z) - Ambulatory blood pressure monitoring versus office blood pressure
measurement: Are there sex differences? [55.41644538483948]
Office Blood Pressure Measurement (OBP) is a technique performed in-office with the sphygmomanometer, while Ambulatory Blood Pressure Monitoring (ABPM) is a technique that measures blood pressure during 24h.
The aim of this study is to examine the possible influence of sex on the discrepancies between OBP and ABPM in 872 subjects with known or suspected hypertension.
arXiv Detail & Related papers (2021-06-04T10:09:44Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
We present UNcertaInTy-based hEalth risk prediction (UNITE) model.
UNITE provides accurate disease risk prediction and uncertainty estimation leveraging multi-sourced health data.
We evaluate UNITE on real-world disease risk prediction tasks: nonalcoholic fatty liver disease (NASH) and Alzheimer's disease (AD)
UNITE achieves up to 0.841 in F1 score for AD detection, up to 0.609 in PR-AUC for NASH detection, and outperforms various state-of-the-art baselines by up to $19%$ over the best baseline.
arXiv Detail & Related papers (2020-10-22T02:28:11Z) - Short Term Blood Glucose Prediction based on Continuous Glucose
Monitoring Data [53.01543207478818]
This study explores the use of Continuous Glucose Monitoring (CGM) data as input for digital decision support tools.
We investigate how Recurrent Neural Networks (RNNs) can be used for Short Term Blood Glucose (STBG) prediction.
arXiv Detail & Related papers (2020-02-06T16:39:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.