A Finger on the Pulse of Cardiovascular Health: Estimating Blood Pressure with Smartphone Photoplethysmography-Based Pulse Waveform Analysis
- URL: http://arxiv.org/abs/2401.11117v3
- Date: Wed, 24 Jul 2024 15:01:40 GMT
- Title: A Finger on the Pulse of Cardiovascular Health: Estimating Blood Pressure with Smartphone Photoplethysmography-Based Pulse Waveform Analysis
- Authors: Ivan Liu, Fangyuan Liu, Qi Zhong, Shiguang Ni,
- Abstract summary: This study introduces four innovative strategies to enhance smartphone-based photoplethysmography for blood pressure estimation (SPW-BP)
We employ often-neglected data-quality improvement techniques, such as height normalization, corrupt data removal, and boundary signal reconstruction.
Correlation and SHAP analysis identified key features for improving BP estimation.
However, Bland-Altman analysis revealed systematic biases, and MAE analysis showed that the results did not meet AAMI and BHS accuracy standards.
- Score: 2.4347312660509672
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Utilizing mobile phone cameras for continuous blood pressure (BP) monitoring presents a cost-effective and accessible approach, yet it is challenged by limitations in accuracy and interpretability. This study introduces four innovative strategies to enhance smartphone-based photoplethysmography for BP estimation (SPW-BP), addressing the interpretability-accuracy dilemma. First, we employ often-neglected data-quality improvement techniques, such as height normalization, corrupt data removal, and boundary signal reconstruction. Second, we conduct a comprehensive analysis of thirty waveform indicators across three categories to identify the most predictive features. Third, we use SHapley Additive exPlanations (SHAP) analysis to ensure the transparency and explainability of machine learning outcomes. Fourth, we utilize Bland-Altman analysis alongside AAMI and BHS standards for comparative evaluation. Data from 127 participants demonstrated a significant correlation between smartphone-captured waveform features and those from standard BP monitoring devices. Employing multiple linear regression within a cross-validation framework, waveform variables predicted systolic blood pressure (SBP) with a mean absolute error (MAE) of 3.08-16.64 mmHg and diastolic blood pressure (DBP) with an MAE of 2.86-13.16 mmHg. Further application of Random Forest models significantly improved the prediction MAE for SBP to 2.61-15.21 mmHg and for DBP to 2.14-11.22 mmHg, indicating enhanced predictive accuracy. Correlation and SHAP analysis identified key features for improving BP estimation. However, Bland-Altman analysis revealed systematic biases, and MAE analysis showed that the results did not meet AAMI and BHS accuracy standards. Our findings highlight the potential of SPW-BP, yet suggest that smartphone PPG technology is not yet a viable alternative to traditional medical devices for BP measurement.
Related papers
- A Multi-scenario Attention-based Generative Model for Personalized Blood Pressure Time Series Forecasting [6.311504297463515]
Continuous blood pressure (BP) monitoring is essential for timely diagnosis and intervention in critical care settings.
In this work, we propose a personalized BP forecasting model mainly using electrocardiogram (ECG) and photoplethysmogram ( photoplethysmogram) signals.
Experiments are conducted on datasets collected from three diverse scenarios with BP measurements from 60 subjects total.
arXiv Detail & Related papers (2024-09-07T04:24:15Z) - TransfoRhythm: A Transformer Architecture Conductive to Blood Pressure Estimation via Solo PPG Signal Capturing [5.255373360156652]
Blood pressure (BP) serves as a critical health indicator for accurate and timely diagnosis and/or treatment of hypertension.
Recent advancements in Artificial Intelligence (AI) and Deep Neural Networks (DNNs) have led to a surge of interest in developing data-driven solutions.
This paper represents the first study to apply the MIMIC IV dataset for cuff-less BP estimation.
arXiv Detail & Related papers (2024-04-15T00:36:33Z) - Analyzing Participants' Engagement during Online Meetings Using Unsupervised Remote Photoplethysmography with Behavioral Features [50.82725748981231]
Engagement measurement finds application in healthcare, education, services.
Use of physiological and behavioral features is viable, but impracticality of traditional physiological measurement arises due to the need for contact sensors.
We demonstrate the feasibility of the unsupervised photoplethysmography (rmography) as an alternative for contact sensors.
arXiv Detail & Related papers (2024-04-05T20:39:16Z) - Simulation-based Inference for Cardiovascular Models [57.92535897767929]
We use simulation-based inference to solve the inverse problem of mapping waveforms back to plausible physiological parameters.
We perform an in-silico uncertainty analysis of five biomarkers of clinical interest.
We study the gap between in-vivo and in-silico with the MIMIC-III waveform database.
arXiv Detail & Related papers (2023-07-26T02:34:57Z) - Reducing a complex two-sided smartwatch examination for Parkinson's
Disease to an efficient one-sided examination preserving machine learning
accuracy [63.20765930558542]
We have recorded participants performing technology-based assessments in a prospective study to research Parkinson's Disease (PD)
This study provided the largest PD sample size of two-hand synchronous smartwatch measurements.
arXiv Detail & Related papers (2022-05-11T09:12:59Z) - Lung Cancer Lesion Detection in Histopathology Images Using Graph-Based
Sparse PCA Network [93.22587316229954]
We propose a graph-based sparse principal component analysis (GS-PCA) network, for automated detection of cancerous lesions on histological lung slides stained by hematoxylin and eosin (H&E)
We evaluate the performance of the proposed algorithm on H&E slides obtained from an SVM K-rasG12D lung cancer mouse model using precision/recall rates, F-score, Tanimoto coefficient, and area under the curve (AUC) of the receiver operator characteristic (ROC)
arXiv Detail & Related papers (2021-10-27T19:28:36Z) - A Deep Learning Approach to Predict Blood Pressure from PPG Signals [10.028103259763352]
Blood Pressure (BP) is one of the four primary vital signs indicating the status of the body's vital (life-sustaining) functions.
We propose an advanced data-driven approach that uses a three-layer deep neural network to estimate BP based on PPG signals.
arXiv Detail & Related papers (2021-07-30T22:45:34Z) - Continuous Monitoring of Blood Pressure with Evidential Regression [19.92542487970484]
Photoplethysmogram (MIC) signal-based blood pressure estimation is a promising candidate for modern BP measurements.
The proposed method provides the reliability of the predicted BP by estimating its uncertainty to help diagnose medical condition.
arXiv Detail & Related papers (2021-02-06T09:09:31Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
We present UNcertaInTy-based hEalth risk prediction (UNITE) model.
UNITE provides accurate disease risk prediction and uncertainty estimation leveraging multi-sourced health data.
We evaluate UNITE on real-world disease risk prediction tasks: nonalcoholic fatty liver disease (NASH) and Alzheimer's disease (AD)
UNITE achieves up to 0.841 in F1 score for AD detection, up to 0.609 in PR-AUC for NASH detection, and outperforms various state-of-the-art baselines by up to $19%$ over the best baseline.
arXiv Detail & Related papers (2020-10-22T02:28:11Z) - Estimating Blood Pressure from Photoplethysmogram Signal and Demographic
Features using Machine Learning Techniques [0.0]
Hypertension is a potentially unsafe health ailment, which can be indicated directly from the Blood pressure (BP)
Continuous monitoring of BP is very important; however, BP measurements are discrete and uncomfortable to the user.
To address this need, a cuffless, continuous and a non-invasive BP measurement system is proposed.
arXiv Detail & Related papers (2020-05-07T09:45:02Z) - Short Term Blood Glucose Prediction based on Continuous Glucose
Monitoring Data [53.01543207478818]
This study explores the use of Continuous Glucose Monitoring (CGM) data as input for digital decision support tools.
We investigate how Recurrent Neural Networks (RNNs) can be used for Short Term Blood Glucose (STBG) prediction.
arXiv Detail & Related papers (2020-02-06T16:39:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.