A Comprehensive Exploration of Personalized Learning in Smart Education:
From Student Modeling to Personalized Recommendations
- URL: http://arxiv.org/abs/2402.01666v1
- Date: Mon, 15 Jan 2024 08:49:25 GMT
- Title: A Comprehensive Exploration of Personalized Learning in Smart Education:
From Student Modeling to Personalized Recommendations
- Authors: Siyu Wu, Yang Cao, Jiajun Cui, Runze Li, Hong Qian, Bo Jiang, Wei
Zhang
- Abstract summary: China, the United States, the European Union, and others have put forward the importance of personalized learning.
This review provides a comprehensive analysis of the current situation of personalized learning and its key role in education.
- Score: 19.064610936977402
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the development of artificial intelligence, personalized learning has
attracted much attention as an integral part of intelligent education. China,
the United States, the European Union, and others have put forward the
importance of personalized learning in recent years, emphasizing the
realization of the organic combination of large-scale education and
personalized training. The development of a personalized learning system
oriented to learners' preferences and suited to learners' needs should be
accelerated. This review provides a comprehensive analysis of the current
situation of personalized learning and its key role in education. It discusses
the research on personalized learning from multiple perspectives, combining
definitions, goals, and related educational theories to provide an in-depth
understanding of personalized learning from an educational perspective,
analyzing the implications of different theories on personalized learning, and
highlighting the potential of personalized learning to meet the needs of
individuals and to enhance their abilities. Data applications and assessment
indicators in personalized learning are described in detail, providing a solid
data foundation and evaluation system for subsequent research. Meanwhile, we
start from both student modeling and recommendation algorithms and deeply
analyze the cognitive and non-cognitive perspectives and the contribution of
personalized recommendations to personalized learning. Finally, we explore the
challenges and future trajectories of personalized learning. This review
provides a multidimensional analysis of personalized learning through a more
comprehensive study, providing academics and practitioners with cutting-edge
explorations to promote continuous progress in the field of personalized
learning.
Related papers
- Large Language Models for Education: A Survey and Outlook [69.02214694865229]
We systematically review the technological advancements in each perspective, organize related datasets and benchmarks, and identify the risks and challenges associated with deploying LLMs in education.
Our survey aims to provide a comprehensive technological picture for educators, researchers, and policymakers to harness the power of LLMs to revolutionize educational practices and foster a more effective personalized learning environment.
arXiv Detail & Related papers (2024-03-26T21:04:29Z) - Evaluating and Optimizing Educational Content with Large Language Model Judgments [52.33701672559594]
We use Language Models (LMs) as educational experts to assess the impact of various instructions on learning outcomes.
We introduce an instruction optimization approach in which one LM generates instructional materials using the judgments of another LM as a reward function.
Human teachers' evaluations of these LM-generated worksheets show a significant alignment between the LM judgments and human teacher preferences.
arXiv Detail & Related papers (2024-03-05T09:09:15Z) - A Review of Data Mining in Personalized Education: Current Trends and
Future Prospects [30.033926908231297]
This paper focuses on four scenarios: educational recommendation, cognitive diagnosis, knowledge tracing, and learning analysis.
The integration of AI in educational platforms provides insights into academic performance, learning preferences, and behaviors, optimizing the personal learning process.
arXiv Detail & Related papers (2024-02-27T06:09:48Z) - Integrating AI and Learning Analytics for Data-Driven Pedagogical Decisions and Personalized Interventions in Education [0.2812395851874055]
This research study explores the conceptualization, development, and deployment of an innovative learning analytics tool.
By analyzing critical data points such as students' stress levels, curiosity, confusion, agitation, topic preferences, and study methods, the tool provides a comprehensive view of the learning environment.
This research underscores AI's role in shaping personalized, data-driven education.
arXiv Detail & Related papers (2023-12-15T06:00:26Z) - Personalization, Cognition, and Gamification-based Programming Language
Learning: A State-of-the-Art Systematic Literature Review [0.13053649021965597]
Programming courses in computing science are important because they are often the first introduction to computer programming for many students.
The current teacher-lecturer model of learning commonly employed in university lecture halls often results in a lack of motivation and participation in learning.
This paper provides insights into designing and implementing effective personalized gamification interventions in programming courses.
arXiv Detail & Related papers (2023-09-05T05:14:23Z) - Knowledge-augmented Deep Learning and Its Applications: A Survey [60.221292040710885]
knowledge-augmented deep learning (KADL) aims to identify domain knowledge and integrate it into deep models for data-efficient, generalizable, and interpretable deep learning.
This survey subsumes existing works and offers a bird's-eye view of research in the general area of knowledge-augmented deep learning.
arXiv Detail & Related papers (2022-11-30T03:44:15Z) - Unsupervised Domain Adaptive Person Re-Identification via Human Learning
Imitation [67.52229938775294]
In past years, researchers propose to utilize the teacher-student framework in their methods to decrease the domain gap between different person re-identification datasets.
Inspired by recent teacher-student framework based methods, we propose to conduct further exploration to imitate the human learning process from different aspects.
arXiv Detail & Related papers (2021-11-28T01:14:29Z) - A Network Science Perspective to Personalized Learning [0.0]
We examine how learning objectives can be achieved through a learning platform that offers content choices and multiple modalities of engagement to support self-paced learning.
This framework brings the attention to learning experiences, rather than teaching experiences, by providing the learner engagement and content choices supported by a network of knowledge.
arXiv Detail & Related papers (2021-11-02T01:50:01Z) - Personalized Education in the AI Era: What to Expect Next? [76.37000521334585]
The objective of personalized learning is to design an effective knowledge acquisition track that matches the learner's strengths and bypasses her weaknesses to meet her desired goal.
In recent years, the boost of artificial intelligence (AI) and machine learning (ML) has unfolded novel perspectives to enhance personalized education.
arXiv Detail & Related papers (2021-01-19T12:23:32Z) - Self-supervised Learning from a Multi-view Perspective [121.63655399591681]
We show that self-supervised representations can extract task-relevant information and discard task-irrelevant information.
Our theoretical framework paves the way to a larger space of self-supervised learning objective design.
arXiv Detail & Related papers (2020-06-10T00:21:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.