A Scalable and Automated Framework for Tracking the likely Adoption of
Emerging Technologies
- URL: http://arxiv.org/abs/2402.01670v1
- Date: Tue, 16 Jan 2024 16:42:14 GMT
- Title: A Scalable and Automated Framework for Tracking the likely Adoption of
Emerging Technologies
- Authors: Lowri Williams, Eirini Anthi, Pete Burnap
- Abstract summary: This paper presents a scalable and automated framework for tracking likely adoption and/or rejection of new technologies from a large landscape of adopters.
A large corpus of social media texts containing references to emerging technologies was compiled.
The expression of positive sentiment infers an increase in the likelihood of impacting a technology user's acceptance to adopt, integrate, and/or use the technology, and negative sentiment infers an increase in the likelihood of impacting the rejection of emerging technologies by adopters.
- Score: 3.4530027457862
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: While new technologies are expected to revolutionise and become game-changers
in improving the efficiencies and practises of our daily lives, it is also
critical to investigate and understand the barriers and opportunities faced by
their adopters. Such findings can serve as an additional feature in the
decision-making process when analysing the risks, costs, and benefits of
adopting an emerging technology in a particular setting. Although several
studies have attempted to perform such investigations, these approaches adopt a
qualitative data collection methodology which is limited in terms of the size
of the targeted participant group and is associated with a significant manual
overhead when transcribing and inferring results. This paper presents a
scalable and automated framework for tracking likely adoption and/or rejection
of new technologies from a large landscape of adopters. In particular, a large
corpus of social media texts containing references to emerging technologies was
compiled. Text mining techniques were applied to extract sentiments expressed
towards technology aspects. In the context of the problem definition herein, we
hypothesise that the expression of positive sentiment infers an increase in the
likelihood of impacting a technology user's acceptance to adopt, integrate,
and/or use the technology, and negative sentiment infers an increase in the
likelihood of impacting the rejection of emerging technologies by adopters. To
quantitatively test our hypothesis, a ground truth analysis was performed to
validate that the sentiment captured by the text mining approach is comparable
to the results given by human annotators when asked to label whether such texts
positively or negatively impact their outlook towards adopting an emerging
technology.
Related papers
- Cutting Through the Confusion and Hype: Understanding the True Potential of Generative AI [0.0]
This paper explores the nuanced landscape of generative AI (genAI)
It focuses on neural network-based models like Large Language Models (LLMs)
arXiv Detail & Related papers (2024-10-22T02:18:44Z) - Deepfake Generation and Detection: A Benchmark and Survey [134.19054491600832]
Deepfake is a technology dedicated to creating highly realistic facial images and videos under specific conditions.
This survey comprehensively reviews the latest developments in deepfake generation and detection.
We focus on researching four representative deepfake fields: face swapping, face reenactment, talking face generation, and facial attribute editing.
arXiv Detail & Related papers (2024-03-26T17:12:34Z) - Safeguarding Marketing Research: The Generation, Identification, and Mitigation of AI-Fabricated Disinformation [0.26107298043931204]
Generative AI has ushered in the ability to generate content that closely mimics human contributions.
These models can be used to manipulate public opinion and distort perceptions, resulting in a decline in trust towards digital platforms.
This study contributes to marketing literature and practice in three ways.
arXiv Detail & Related papers (2024-03-17T13:08:28Z) - Towards Possibilities & Impossibilities of AI-generated Text Detection:
A Survey [97.33926242130732]
Large Language Models (LLMs) have revolutionized the domain of natural language processing (NLP) with remarkable capabilities of generating human-like text responses.
Despite these advancements, several works in the existing literature have raised serious concerns about the potential misuse of LLMs.
To address these concerns, a consensus among the research community is to develop algorithmic solutions to detect AI-generated text.
arXiv Detail & Related papers (2023-10-23T18:11:32Z) - Predictable Artificial Intelligence [77.1127726638209]
This paper introduces the ideas and challenges of Predictable AI.
It explores the ways in which we can anticipate key validity indicators of present and future AI ecosystems.
We argue that achieving predictability is crucial for fostering trust, liability, control, alignment and safety of AI ecosystems.
arXiv Detail & Related papers (2023-10-09T21:36:21Z) - Eliciting the Double-edged Impact of Digitalisation: a Case Study in
Rural Areas [1.8707139489039097]
This paper reports a case study about the impact of digitalisation in remote mountain areas, in the context of a system for ordinary land management and hydro-geological risk control.
We highlight the higher stress due to the excess of connectivity, the partial reduction of decision-making abilities, and the risk of marginalisation for certain types of stakeholders.
Our study contributes to the literature with: a set of impacts specific to the case, which can apply to similar contexts; an effective approach for impact elicitation; and a list of lessons learned from the experience.
arXiv Detail & Related papers (2023-06-08T10:01:35Z) - The Role of AI in Drug Discovery: Challenges, Opportunities, and
Strategies [97.5153823429076]
The benefits, challenges and drawbacks of AI in this field are reviewed.
The use of data augmentation, explainable AI, and the integration of AI with traditional experimental methods are also discussed.
arXiv Detail & Related papers (2022-12-08T23:23:39Z) - Counterfactual Explanations as Interventions in Latent Space [62.997667081978825]
Counterfactual explanations aim to provide to end users a set of features that need to be changed in order to achieve a desired outcome.
Current approaches rarely take into account the feasibility of actions needed to achieve the proposed explanations.
We present Counterfactual Explanations as Interventions in Latent Space (CEILS), a methodology to generate counterfactual explanations.
arXiv Detail & Related papers (2021-06-14T20:48:48Z) - Axes for Sociotechnical Inquiry in AI Research [3.0215443986383734]
We propose four directions for inquiry into new and evolving areas of technological development.
The paper provides a lexicon for sociotechnical inquiry and illustrates it through the example of consumer drone technology.
arXiv Detail & Related papers (2021-04-26T16:49:04Z) - LioNets: A Neural-Specific Local Interpretation Technique Exploiting
Penultimate Layer Information [6.570220157893279]
Interpretable machine learning (IML) is an urgent topic of research.
This paper focuses on a local-based, neural-specific interpretation process applied to textual and time-series data.
arXiv Detail & Related papers (2021-04-13T09:39:33Z) - Survey of Network Intrusion Detection Methods from the Perspective of
the Knowledge Discovery in Databases Process [63.75363908696257]
We review the methods that have been applied to network data with the purpose of developing an intrusion detector.
We discuss the techniques used for the capture, preparation and transformation of the data, as well as, the data mining and evaluation methods.
As a result of this literature review, we investigate some open issues which will need to be considered for further research in the area of network security.
arXiv Detail & Related papers (2020-01-27T11:21:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.