Safeguarding Marketing Research: The Generation, Identification, and Mitigation of AI-Fabricated Disinformation
- URL: http://arxiv.org/abs/2403.14706v1
- Date: Sun, 17 Mar 2024 13:08:28 GMT
- Title: Safeguarding Marketing Research: The Generation, Identification, and Mitigation of AI-Fabricated Disinformation
- Authors: Anirban Mukherjee,
- Abstract summary: Generative AI has ushered in the ability to generate content that closely mimics human contributions.
These models can be used to manipulate public opinion and distort perceptions, resulting in a decline in trust towards digital platforms.
This study contributes to marketing literature and practice in three ways.
- Score: 0.26107298043931204
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Generative AI has ushered in the ability to generate content that closely mimics human contributions, introducing an unprecedented threat: Deployed en masse, these models can be used to manipulate public opinion and distort perceptions, resulting in a decline in trust towards digital platforms. This study contributes to marketing literature and practice in three ways. First, it demonstrates the proficiency of AI in fabricating disinformative user-generated content (UGC) that mimics the form of authentic content. Second, it quantifies the disruptive impact of such UGC on marketing research, highlighting the susceptibility of analytics frameworks to even minimal levels of disinformation. Third, it proposes and evaluates advanced detection frameworks, revealing that standard techniques are insufficient for filtering out AI-generated disinformation. We advocate for a comprehensive approach to safeguarding marketing research that integrates advanced algorithmic solutions, enhanced human oversight, and a reevaluation of regulatory and ethical frameworks. Our study seeks to serve as a catalyst, providing a foundation for future research and policy-making aimed at navigating the intricate challenges at the nexus of technology, ethics, and marketing.
Related papers
- Socio-Economic Consequences of Generative AI: A Review of Methodological Approaches [0.0]
We identify the primary methodologies that may be used to help predict the economic and social impacts of generative AI adoption.
Through a comprehensive literature review, we uncover a range of methodologies poised to assess the multifaceted impacts of this technological revolution.
arXiv Detail & Related papers (2024-11-14T09:40:25Z) - Persuasion with Large Language Models: a Survey [49.86930318312291]
Large Language Models (LLMs) have created new disruptive possibilities for persuasive communication.
In areas such as politics, marketing, public health, e-commerce, and charitable giving, such LLM Systems have already achieved human-level or even super-human persuasiveness.
Our survey suggests that the current and future potential of LLM-based persuasion poses profound ethical and societal risks.
arXiv Detail & Related papers (2024-11-11T10:05:52Z) - Generative AI for Secure and Privacy-Preserving Mobile Crowdsensing [74.58071278710896]
generative AI has attracted much attention from both academic and industrial fields.
Secure and privacy-preserving mobile crowdsensing (SPPMCS) has been widely applied in data collection/ acquirement.
arXiv Detail & Related papers (2024-05-17T04:00:58Z) - Human-Centered AI Product Prototyping with No-Code AutoML: Conceptual Framework, Potentials and Limitations [0.0]
This paper focuses on the challenges posed by the probabilistic nature of AI behavior and the limited accessibility of prototyping tools to non-experts.
A Design Science Research (DSR) approach is presented which culminates in a conceptual framework aimed at improving the AI prototyping process.
The framework describes the seamless incorporation of non-expert input and evaluation during prototyping, leveraging the potential of no-code AutoML to enhance accessibility and interpretability.
arXiv Detail & Related papers (2024-02-06T16:00:32Z) - Deepfakes, Misinformation, and Disinformation in the Era of Frontier AI, Generative AI, and Large AI Models [7.835719708227145]
Deepfakes and the spread of m/disinformation have emerged as formidable threats to the integrity of information ecosystems worldwide.
We highlight the mechanisms through which generative AI based on large models (LM-based GenAI) craft seemingly convincing yet fabricated contents.
We introduce an integrated framework that combines advanced detection algorithms, cross-platform collaboration, and policy-driven initiatives.
arXiv Detail & Related papers (2023-11-29T06:47:58Z) - Exploration with Principles for Diverse AI Supervision [88.61687950039662]
Training large transformers using next-token prediction has given rise to groundbreaking advancements in AI.
While this generative AI approach has produced impressive results, it heavily leans on human supervision.
This strong reliance on human oversight poses a significant hurdle to the advancement of AI innovation.
We propose a novel paradigm termed Exploratory AI (EAI) aimed at autonomously generating high-quality training data.
arXiv Detail & Related papers (2023-10-13T07:03:39Z) - A Comprehensive Analysis of the Role of Artificial Intelligence and
Machine Learning in Modern Digital Forensics and Incident Response [0.0]
The goal is to look closely at how AI and ML techniques are used in digital forensics and incident response.
This endeavour digs far beneath the surface to unearth the intricate ways AI-driven methodologies are shaping these crucial facets of digital forensics practice.
Ultimately, this paper underscores the significance of AI and ML integration in digital forensics, offering insights into their benefits, drawbacks, and broader implications for tackling modern cyber threats.
arXiv Detail & Related papers (2023-09-13T16:23:53Z) - The Role of AI in Drug Discovery: Challenges, Opportunities, and
Strategies [97.5153823429076]
The benefits, challenges and drawbacks of AI in this field are reviewed.
The use of data augmentation, explainable AI, and the integration of AI with traditional experimental methods are also discussed.
arXiv Detail & Related papers (2022-12-08T23:23:39Z) - Counterfactual Explanations as Interventions in Latent Space [62.997667081978825]
Counterfactual explanations aim to provide to end users a set of features that need to be changed in order to achieve a desired outcome.
Current approaches rarely take into account the feasibility of actions needed to achieve the proposed explanations.
We present Counterfactual Explanations as Interventions in Latent Space (CEILS), a methodology to generate counterfactual explanations.
arXiv Detail & Related papers (2021-06-14T20:48:48Z) - An interdisciplinary conceptual study of Artificial Intelligence (AI)
for helping benefit-risk assessment practices: Towards a comprehensive
qualification matrix of AI programs and devices (pre-print 2020) [55.41644538483948]
This paper proposes a comprehensive analysis of existing concepts coming from different disciplines tackling the notion of intelligence.
The aim is to identify shared notions or discrepancies to consider for qualifying AI systems.
arXiv Detail & Related papers (2021-05-07T12:01:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.