LiPO: Listwise Preference Optimization through Learning-to-Rank
- URL: http://arxiv.org/abs/2402.01878v3
- Date: Fri, 24 Jan 2025 19:13:34 GMT
- Title: LiPO: Listwise Preference Optimization through Learning-to-Rank
- Authors: Tianqi Liu, Zhen Qin, Junru Wu, Jiaming Shen, Misha Khalman, Rishabh Joshi, Yao Zhao, Mohammad Saleh, Simon Baumgartner, Jialu Liu, Peter J. Liu, Xuanhui Wang,
- Abstract summary: Policy can learn more effectively from a ranked list of plausible responses given the prompt.
We show that LiPO-$lambda$ can outperform DPO variants and SLiC by a clear margin on several preference alignment tasks.
- Score: 62.02782819559389
- License:
- Abstract: Aligning language models (LMs) with curated human feedback is critical to control their behaviors in real-world applications. Several recent policy optimization methods, such as DPO and SLiC, serve as promising alternatives to the traditional Reinforcement Learning from Human Feedback (RLHF) approach. In practice, human feedback often comes in a format of a ranked list over multiple responses to amortize the cost of reading prompt. Multiple responses can also be ranked by reward models or AI feedback. There lacks such a thorough study on directly fitting upon a list of responses. In this work, we formulate the LM alignment as a \textit{listwise} ranking problem and describe the LiPO framework, where the policy can potentially learn more effectively from a ranked list of plausible responses given the prompt. This view draws an explicit connection to Learning-to-Rank (LTR), where most existing preference optimization work can be mapped to existing ranking objectives. Following this connection, we provide an examination of ranking objectives that are not well studied for LM alignment with DPO and SLiC as special cases when list size is two. In particular, we highlight a specific method, LiPO-$\lambda$, which leverages a state-of-the-art \textit{listwise} ranking objective and weights each preference pair in a more advanced manner. We show that LiPO-$\lambda$ can outperform DPO variants and SLiC by a clear margin on several preference alignment tasks with both curated and real rankwise preference data.
Related papers
- Test-Time Preference Optimization: On-the-Fly Alignment via Iterative Textual Feedback [40.01227095901647]
Large language models (LLMs) demonstrate impressive performance but lack the flexibility to adapt to human preferences quickly without retraining.
We introduce Test-time Preference Optimization (TPO), a framework that aligns LLM outputs with human preferences during inference.
Our findings establish TPO as a practical, lightweight alternative for test-time preference optimization, achieving alignment on the fly.
arXiv Detail & Related papers (2025-01-22T14:15:46Z) - Online Preference Alignment for Language Models via Count-based Exploration [46.46627519343809]
Reinforcement Learning from Human Feedback (RLHF) has shown great potential in fine-tuning Large Language Models (LLMs) to align with human preferences.
Existing methods perform preference alignment from a fixed dataset, which can be limited in data coverage.
Online RLHF is more desirable to empower the LLM to explore outside the support of the initial dataset by iteratively collecting the prompt-response pairs.
arXiv Detail & Related papers (2025-01-22T09:12:09Z) - Self-Calibrated Listwise Reranking with Large Language Models [137.6557607279876]
Large language models (LLMs) have been employed in reranking tasks through a sequence-to-sequence approach.
This reranking paradigm requires a sliding window strategy to iteratively handle larger candidate sets.
We propose a novel self-calibrated listwise reranking method, which aims to leverage LLMs to produce global relevance scores for ranking.
arXiv Detail & Related papers (2024-11-07T10:31:31Z) - Comparing Bad Apples to Good Oranges: Aligning Large Language Models via Joint Preference Optimization [105.3612692153615]
We propose a new axis based on eliciting preferences jointly over instruction-response pairs.
Joint preferences over instruction and response pairs can significantly enhance the alignment of large language models.
arXiv Detail & Related papers (2024-03-31T02:05:40Z) - Fine-Tuning Language Models with Reward Learning on Policy [68.70065254564642]
Reinforcement learning from human feedback (RLHF) has emerged as an effective approach to aligning large language models (LLMs) to human preferences.
Despite its popularity, (fixed) reward models may suffer from inaccurate off-distribution.
We propose reward learning on policy (RLP), an unsupervised framework that refines a reward model using policy samples to keep it on-distribution.
arXiv Detail & Related papers (2024-03-28T10:02:10Z) - Make Large Language Model a Better Ranker [20.532118635672763]
This paper introduces the large language model framework with Aligned Listwise Ranking Objectives (ALRO)
ALRO is designed to bridge the gap between the capabilities of LLMs and nuanced requirements of ranking tasks.
Our evaluative studies reveal that ALRO outperforms both existing embedding-based recommendation methods and LLM-based recommendation baselines.
arXiv Detail & Related papers (2024-03-28T07:22:16Z) - Relative Preference Optimization: Enhancing LLM Alignment through Contrasting Responses across Identical and Diverse Prompts [95.09994361995389]
Relative Preference Optimization (RPO) is designed to discern between more and less preferred responses derived from both identical and related prompts.
RPO has demonstrated a superior ability to align large language models with user preferences and to improve their adaptability during the training process.
arXiv Detail & Related papers (2024-02-12T22:47:57Z) - Tuna: Instruction Tuning using Feedback from Large Language Models [74.04950416204551]
We propose finetuning an instruction-tuned large language model using our novel textitprobabilistic ranking and textitcontextual ranking approaches.
Probabilistic ranking enables the instruction-tuned model to inherit the relative rankings of high-quality and low-quality responses from the teacher LLM.
On the other hand, learning with contextual ranking allows the model to refine its own response distribution using the contextual understanding ability of stronger LLMs.
arXiv Detail & Related papers (2023-10-20T09:55:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.