論文の概要: From PEFT to DEFT: Parameter Efficient Finetuning for Reducing Activation Density in Transformers
- arxiv url: http://arxiv.org/abs/2402.01911v2
- Date: Sun, 14 Jul 2024 17:32:36 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-17 02:05:02.683236
- Title: From PEFT to DEFT: Parameter Efficient Finetuning for Reducing Activation Density in Transformers
- Title(参考訳): PEFTからDEFTへ:変圧器の活性化密度低減のためのパラメータ効率的なファインタニング
- Authors: Bharat Runwal, Tejaswini Pedapati, Pin-Yu Chen,
- Abstract要約: 本稿では,事前学習したモデルにおいて,高い活性化空間性を促進する新しい密度損失を提案する。
提案手法である textbfDEFT は,RoBERTa$_mathrmLarge$ で textbf44.94% ,Flan-T5$_mathrmXXL$ で textbf53.19% (エンコーダ密度) と textbf90.60% (デコーダ密度) で常に活性化密度を減少させることができる。
- 参考スコア(独自算出の注目度): 52.199303258423306
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Pretrained Language Models (PLMs) have become the de facto starting point for fine-tuning on downstream tasks. However, as model sizes continue to increase, traditional fine-tuning of all the parameters becomes challenging. To address this, parameter-efficient fine-tuning (PEFT) methods have gained popularity as a means to adapt PLMs effectively. In parallel, recent studies have revealed the presence of activation sparsity within the intermediate outputs of the multilayer perceptron (MLP) blocks in transformers. Low activation density enables efficient model inference on sparsity-aware hardware. Building upon this insight, in this work, we propose a novel density loss that encourages higher activation sparsity (equivalently, lower activation density) in the pre-trained models. We demonstrate the effectiveness of our approach by utilizing mainstream PEFT techniques, including QLoRA, LoRA, Adapter, and Prompt/Prefix Tuning, to facilitate efficient model adaptation across diverse downstream tasks. Experiments show that our proposed method, \textbf{DEFT} (Density-Efficient Fine-Tuning), can consistently reduce activation density by up to \textbf{44.94\%} on RoBERTa$_\mathrm{Large}$ and by \textbf{53.19\%} (encoder density) and \textbf{90.60\%} (decoder density) on Flan-T5$_\mathrm{XXL}$ (\textbf{11B}) compared to PEFT, using GLUE and QA (SQuAD) benchmarks respectively. We also introduce \textbf{ADA-DEFT}, an adaptive variant of our DEFT approach, which achieves significant memory and runtime savings during inference. For instance, ADA-DEFT reduces runtime by \textbf{8.79\%}and memory usage by \textbf{17.46\%} in Flan-T5$_\mathrm{XL}$, and by \textbf{2.79\%} and \textbf{2.54\%} respectively in Flan-T5$_\mathrm{XXL}$. Additionally, we showcase that DEFT works complementarily with quantized and pruned models.
- Abstract(参考訳): 事前訓練された言語モデル(PLM)は、下流タスクを微調整するための事実上の出発点となっている。
しかし、モデルのサイズが大きくなるにつれて、従来のパラメータの微調整は困難になる。
これを解決するために,パラメータ効率のよい微調整法(PEFT)がPLMを効果的に適応する手段として人気を集めている。
並行して、近年の研究では、トランスにおける多層パーセプトロン(MLP)ブロックの中間出力内に活性化空間の存在が明らかにされている。
低アクティベーション密度は、スパシティ対応ハードウェア上での効率的なモデル推論を可能にする。
この知見に基づいて、本研究では、事前訓練されたモデルにおいて、より高い活性化間隔(同様に、低い活性化密度)を促進する新しい密度損失を提案する。
本稿では,QLoRA,LoRA,Adapter,Prompt/Prefix TuningなどのPEFT技術を用いて,様々な下流タスクにまたがる効率的なモデル適応を容易にする手法の有効性を実証する。
実験により,提案手法はFlan-T5$_\mathrm{XXL}$(Density-Efficient Fine-Tuning)に対して,RoBERTa$_\mathrm{Large}$上の \textbf{44.94\%},Flan-T5$_\mathrm{XXL}$(SQuAD)ベンチマーク上で \textbf{53.19\%}(エンコーダ密度)および \textbf{90.60\%}(デコーダ密度)をPEFTと比較して,それぞれGLUEおよびQA(SQuAD)ベンチマークを用いて活性化密度を一定に低減できることがわかった。
また,提案手法の適応型である \textbf{ADA-DEFT} も導入した。
例えば、ADA-DEFT はランタイムを Flan-T5$_\mathrm{XL}$ で \textbf{8.79\%} と、Flan-T5$_\mathrm{XXL}$ で \textbf{2.79\%} と \textbf{2.54\%} で減らす。
さらに、DEFTは量子化および切断されたモデルと相補的に機能することを示した。
関連論文リスト
- IntLoRA: Integral Low-rank Adaptation of Quantized Diffusion Models [68.55148272295916]
IntLoRAを提案し、整数型(INT)低ランクパラメータを用いて効率限界を押し上げ、量子化拡散モデルに適応させる。
IntLoRAには3つの大きな利点がある: (i) 微調整の場合、事前トレーニングされた重みは量子化され、メモリ使用量が減少する (ii) ストレージの場合、事前トレーニングされた重みと低ランクの重みの両方が、ディスクスペースを少なく消費するINT内にある; (iii) 推論の場合、IntLoRA重みは、効率的な整数乗算やビットシフトによって自然に量子化された事前トレーニングされた重みにマージできる。
論文 参考訳(メタデータ) (2024-10-29T05:50:17Z) - SparseGrad: A Selective Method for Efficient Fine-tuning of MLP Layers [88.68985153780514]
本稿では,パラメータブロックでよく動作する選択型PEFT法,すなわちSparseGradを提案する。
SparseGrad を NLU タスクに BERT と RoBERTa を,質問応答タスクに LLaMa-2 を適用した。
論文 参考訳(メタデータ) (2024-10-09T19:03:52Z) - Parameter-Efficient Fine-Tuning via Selective Discrete Cosine Transform [10.565509997395504]
本稿では,このフロンティアを推し進めるために,Selective Discrete Cosine Transformation (SDCTFT) を提案する。
その一般的な考え方は、DCTの優れたエネルギー圧縮とデコリレーション特性を活用することである。
4つのベンチマークデータセットの実験では、より優れた精度、計算コストの削減、ストレージ要求の低減が示されている。
論文 参考訳(メタデータ) (2024-10-09T16:07:42Z) - Sparse Matrix in Large Language Model Fine-tuning [1.9874264019909988]
本稿では,PEFTとフル微調整性能の差を最小限に抑えるために,スパースサブ行列を選択する手法を提案する。
実験では,本手法が他のPEFTベースラインを一貫して上回ることを示した。
また,訓練可能なパラメータの数が増加するにつれて,LoRAとDoRAの性能が低下する傾向を示す。
論文 参考訳(メタデータ) (2024-05-24T13:12:14Z) - Sparse-Tuning: Adapting Vision Transformers with Efficient Fine-tuning and Inference [14.030836300221756]
textbfSparse-Tuningは、画像やビデオの情報冗長性を考慮に入れた新しいPEFTメソッドである。
Sparse-Tuningは各層で処理されるトークンの量を最小限に抑え、計算とメモリのオーバーヘッドを2次的に削減する。
我々のSparse-TuningはGFLOPsを62%-70%に削減し,最先端性能を実現した。
論文 参考訳(メタデータ) (2024-05-23T15:34:53Z) - Dynamic Tuning Towards Parameter and Inference Efficiency for ViT Adaptation [67.13876021157887]
動的チューニング(DyT)は、ViT適応のためのパラメータと推論効率を改善するための新しいアプローチである。
DyTは既存のPEFT法に比べて性能が優れており、VTAB-1KベンチマークではFLOPの71%しか呼び出されていない。
論文 参考訳(メタデータ) (2024-03-18T14:05:52Z) - FFSplit: Split Feed-Forward Network For Optimizing Accuracy-Efficiency
Trade-off in Language Model Inference [57.119047493787185]
本稿では、異なるハードウェア上で、モデルサイズを43.1%削減し、1.25sim1.56times$wall clock time speedupを無視できる精度低下で実現する方法を示す。
実際、本手法では、異なるハードウェア上で、モデルサイズを43.1%削減し、1.25sim1.56Times$wall clock time speedupを無視できる精度で実現している。
論文 参考訳(メタデータ) (2024-01-08T17:29:16Z) - Sparse is Enough in Fine-tuning Pre-trained Large Language Models [98.46493578509039]
我々はSparse Increment Fine-Tuning (SIFT) という勾配に基づくスパース微調整アルゴリズムを提案する。
GLUE Benchmark や Instruction-tuning などのタスクで有効性を検証する。
論文 参考訳(メタデータ) (2023-12-19T06:06:30Z) - Make Pre-trained Model Reversible: From Parameter to Memory Efficient
Fine-Tuning [6.451743797015637]
本稿では,事前学習した言語モデルに対するメモリ効率のよい微調整(MEFT)を提案する。
MEFTはアダプタをPLMに挿入し、PLMの開始点を保ち、追加の事前訓練なしで可逆的にすることができる。
MEFTは、トレーニング可能なパラメータの無視量でフル微調整の84%まで、アクティベーションメモリを大幅に削減する。
論文 参考訳(メタデータ) (2023-06-01T09:26:17Z) - Adaptive Sparsity Level during Training for Efficient Time Series Forecasting with Transformers [20.23085795744602]
textbfAdaptive textbfSparsity textbfPALS(textbfPALS)を提案する。
PALSはスパーストレーニングとトレーニングの方法からインスピレーションを得ている。
スパースニューラルネットワークのトレーニングにおいて、新しい"拡張"メカニズムを導入し、モデルを動的に縮小、拡張、あるいは安定して適切なスパースレベルを見つけることを可能にする。
論文 参考訳(メタデータ) (2023-05-28T06:57:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。