論文の概要: Robust Multi-Task Learning with Excess Risks
- arxiv url: http://arxiv.org/abs/2402.02009v1
- Date: Sat, 3 Feb 2024 03:46:14 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-06 22:49:21.321053
- Title: Robust Multi-Task Learning with Excess Risks
- Title(参考訳): 過剰リスクを伴う頑健なマルチタスク学習
- Authors: Yifei He, Shiji Zhou, Guojun Zhang, Hyokun Yun, Yi Xu, Belinda Zeng,
Trishul Chilimbi, Han Zhao
- Abstract要約: マルチタスク学習(MTL)は、全てのタスク損失の凸結合を最適化することにより、複数のタスクのジョイントモデルを学ぶことを検討する。
既存の方法は適応的な重み更新方式を用いており、各損失に基づいてタスク重みを動的に調整し、困難なタスクを優先順位付けする。
本稿では,過度リスクに基づくタスクバランス手法であるMulti-Task Learning with Excess Risks (ExcessMTL)を提案する。
- 参考スコア(独自算出の注目度): 25.758872841433877
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multi-task learning (MTL) considers learning a joint model for multiple tasks
by optimizing a convex combination of all task losses. To solve the
optimization problem, existing methods use an adaptive weight updating scheme,
where task weights are dynamically adjusted based on their respective losses to
prioritize difficult tasks. However, these algorithms face a great challenge
whenever label noise is present, in which case excessive weights tend to be
assigned to noisy tasks that have relatively large Bayes optimal errors,
thereby overshadowing other tasks and causing performance to drop across the
board. To overcome this limitation, we propose Multi-Task Learning with Excess
Risks (ExcessMTL), an excess risk-based task balancing method that updates the
task weights by their distances to convergence instead. Intuitively, ExcessMTL
assigns higher weights to worse-trained tasks that are further from
convergence. To estimate the excess risks, we develop an efficient and accurate
method with Taylor approximation. Theoretically, we show that our proposed
algorithm achieves convergence guarantees and Pareto stationarity. Empirically,
we evaluate our algorithm on various MTL benchmarks and demonstrate its
superior performance over existing methods in the presence of label noise.
- Abstract(参考訳): マルチタスク学習(MTL)は、全てのタスク損失の凸結合を最適化することにより、複数のタスクのジョイントモデルを学ぶことを検討する。
従来の手法では、各損失に基づいてタスク重みを動的に調整し、困難なタスクを優先順位付けする適応重み更新方式を採用している。
しかし、ラベルノイズが存在すると、これらのアルゴリズムは、比較的大きなベイズ最適誤差を持つノイズタスクに過度な重みを割り当てる傾向があるため、他のタスクをオーバーシャドウし、ボード全体にパフォーマンスが低下する、という大きな課題に直面している。
この制限を克服するため,我々は,タスク重みをコンバージェンスまでの距離で更新する過度なリスクベースのタスクバランシング手法であるexcessmtl(余剰リスクを伴うマルチタスク学習)を提案する。
直感的には、ExcessMTLは収束からさらに遠い訓練の悪いタスクにより高い重みを割り当てる。
余剰リスクを推定するために,テイラー近似を用いた効率的かつ正確な手法を開発した。
理論的には,提案アルゴリズムは収束保証とパレート定常性を実現する。
実験により,提案アルゴリズムを様々なMTLベンチマークで評価し,ラベルノイズの存在下での既存手法よりも優れた性能を示す。
関連論文リスト
- Analytical Uncertainty-Based Loss Weighting in Multi-Task Learning [8.493889694402478]
マルチタスク学習(MTL)における鍵となる課題は、ニューラルネットワークトレーニング中の個々のタスク損失のバランスを取り、パフォーマンスと効率を改善することである。
本稿では,不確かさ重み付けの最も一般的な手法に基づくタスク重み付け手法を提案する。
我々のアプローチは、解析的に禁止された、スケーラブル化のブルートフォースアプローチに匹敵する結果をもたらす。
論文 参考訳(メタデータ) (2024-08-15T07:10:17Z) - Data-CUBE: Data Curriculum for Instruction-based Sentence Representation
Learning [85.66907881270785]
本稿では,学習用マルチタスクデータの順序を列挙するデータカリキュラム,すなわちData-CUBEを提案する。
タスクレベルでは、タスク間の干渉リスクを最小化するために最適なタスクオーダーを見つけることを目的としている。
インスタンスレベルでは、タスク毎のすべてのインスタンスの難易度を測定し、トレーニングのためにそれらを簡単に微分できるミニバッチに分割します。
論文 参考訳(メタデータ) (2024-01-07T18:12:20Z) - Low-Rank Multitask Learning based on Tensorized SVMs and LSSVMs [65.42104819071444]
マルチタスク学習(MTL)はタスク関連性を活用して性能を向上させる。
タスクインデックスに対応する各モードを持つ高次テンソルを用いて、複数のインデックスが参照するタスクを自然に表現する。
テンソル化サポートベクターマシン(SVM)と最小2乗サポートベクターマシン(LSSVM)を併用した低ランクMTL手法の汎用フレームワークを提案する。
論文 参考訳(メタデータ) (2023-08-30T14:28:26Z) - Multi-Objective Optimization for Sparse Deep Multi-Task Learning [0.0]
重み付きチェビシェフスキャラライゼーションを用いたディープニューラルネットワーク(DNN)のトレーニングのための多目的最適化アルゴリズムを提案する。
本研究の目的は,DNNモデルの持続可能性問題,特にDeep Multi-Taskモデルに焦点をあてることである。
論文 参考訳(メタデータ) (2023-08-23T16:42:27Z) - FAMO: Fast Adaptive Multitask Optimization [48.59232177073481]
本稿では,動的重み付け手法であるFast Adaptive Multitask Optimization FAMOを導入する。
この結果から,FAMOは最先端の勾配操作技術に匹敵する,あるいは優れた性能を達成できることが示唆された。
論文 参考訳(メタデータ) (2023-06-06T15:39:54Z) - New Tight Relaxations of Rank Minimization for Multi-Task Learning [161.23314844751556]
2つの正規化項に基づく2つの新しいマルチタスク学習定式化を提案する。
本手法は,タスク間で共有される低ランク構造を正確に復元し,関連するマルチタスク学習方法より優れていることを示す。
論文 参考訳(メタデータ) (2021-12-09T07:29:57Z) - Conflict-Averse Gradient Descent for Multi-task Learning [56.379937772617]
マルチタスクモデルを最適化する際の大きな課題は、矛盾する勾配である。
本稿では、平均損失関数を最小化する衝突-逆勾配降下(CAGrad)を導入する。
CAGradは目標を自動的にバランスし、平均損失よりも最小限に確実に収束する。
論文 参考訳(メタデータ) (2021-10-26T22:03:51Z) - Multi-Task Meta-Learning Modification with Stochastic Approximation [0.7734726150561089]
数ショットの学習問題は、メタ学習アルゴリズムの主要なベンチマークの1つである。
本稿では、トレーニング中にマルチタスクアプローチをとる標準的なメタ学習パイプラインの修正について検討する。
提案手法は,共通損失関数における複数のメタ学習タスクの情報の同時利用を行う。
これらの重みの適切な最適化は、モデル全体のトレーニングに大きな影響を与え、テスト時間タスクの品質を改善する可能性がある。
論文 参考訳(メタデータ) (2021-10-25T18:11:49Z) - SLAW: Scaled Loss Approximate Weighting for Efficient Multi-Task
Learning [0.0]
マルチタスク学習(MTL)は、機械学習のサブフィールドであり、重要な応用がある。
最適MTL最適化法は、各タスクの損失関数の勾配を個別に計算する必要がある。
マルチタスク最適化手法であるScaled Loss Approximate Weighting (SLAW)を提案する。
論文 参考訳(メタデータ) (2021-09-16T20:58:40Z) - Dynamic Multi-Robot Task Allocation under Uncertainty and Temporal
Constraints [52.58352707495122]
本稿では,不確実性およびマルチエージェント協調の下での逐次意思決定における重要な計算課題を分離するマルチロボット割当アルゴリズムを提案する。
都市におけるマルチアームコンベヤベルトピック・アンド・プレイスとマルチドローン配送ディスパッチの2つの異なる領域における広範囲なシミュレーション結果について検証を行った。
論文 参考訳(メタデータ) (2020-05-27T01:10:41Z) - A Simple General Approach to Balance Task Difficulty in Multi-Task
Learning [4.531240717484252]
マルチタスク学習では、異なるタスクの難易度が異なる。
本稿では,BMTL(Ba balanced Multi-Task Learning)フレームワークを提案する。
提案するBMTLフレームワークは非常にシンプルで、ほとんどのマルチタスク学習モデルと組み合わせることができる。
論文 参考訳(メタデータ) (2020-02-12T04:31:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。