論文の概要: Analytical Uncertainty-Based Loss Weighting in Multi-Task Learning
- arxiv url: http://arxiv.org/abs/2408.07985v1
- Date: Thu, 15 Aug 2024 07:10:17 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-16 14:46:15.966416
- Title: Analytical Uncertainty-Based Loss Weighting in Multi-Task Learning
- Title(参考訳): マルチタスク学習における解析的不確かさに基づく損失重み付け
- Authors: Lukas Kirchdorfer, Cathrin Elich, Simon Kutsche, Heiner Stuckenschmidt, Lukas Schott, Jan M. Köhler,
- Abstract要約: マルチタスク学習(MTL)における鍵となる課題は、ニューラルネットワークトレーニング中の個々のタスク損失のバランスを取り、パフォーマンスと効率を改善することである。
本稿では,不確かさ重み付けの最も一般的な手法に基づくタスク重み付け手法を提案する。
我々のアプローチは、解析的に禁止された、スケーラブル化のブルートフォースアプローチに匹敵する結果をもたらす。
- 参考スコア(独自算出の注目度): 8.493889694402478
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the rise of neural networks in various domains, multi-task learning (MTL) gained significant relevance. A key challenge in MTL is balancing individual task losses during neural network training to improve performance and efficiency through knowledge sharing across tasks. To address these challenges, we propose a novel task-weighting method by building on the most prevalent approach of Uncertainty Weighting and computing analytically optimal uncertainty-based weights, normalized by a softmax function with tunable temperature. Our approach yields comparable results to the combinatorially prohibitive, brute-force approach of Scalarization while offering a more cost-effective yet high-performing alternative. We conduct an extensive benchmark on various datasets and architectures. Our method consistently outperforms six other common weighting methods. Furthermore, we report noteworthy experimental findings for the practical application of MTL. For example, larger networks diminish the influence of weighting methods, and tuning the weight decay has a low impact compared to the learning rate.
- Abstract(参考訳): 様々なドメインにおけるニューラルネットワークの台頭により、マルチタスク学習(MTL)は大きな関連性を得た。
MTLにおける重要な課題は、ニューラルネットワークトレーニング中の個々のタスク損失のバランスをとることで、タスク間の知識共有を通じて、パフォーマンスと効率を改善することである。
これらの課題に対処するために,不確かさ重み付けの最も一般的なアプローチと解析学的に最適な不確実性に基づく重み付けの計算に基づいて,可変温度のソフトマックス関数によって正規化される新しいタスク重み付け手法を提案する。
我々のアプローチは、よりコスト効率が良く高いパフォーマンスの代替手段を提供しながら、組合せ的に禁止され、ブルートフォースのScalarizationアプローチに匹敵する結果をもたらす。
さまざまなデータセットやアーキテクチャに関する広範なベンチマークを実施します。
我々の手法は、他の6つの一般的な重み付け法より一貫して優れている。
さらに,MTLを実用化するための実験結果も報告した。
例えば、より大きなネットワークは重み付け方法の影響を減らし、重み付けの調整は学習率よりも低い影響を持つ。
関連論文リスト
- Robust Analysis of Multi-Task Learning Efficiency: New Benchmarks on Light-Weighed Backbones and Effective Measurement of Multi-Task Learning Challenges by Feature Disentanglement [69.51496713076253]
本稿では,既存のMTL手法の効率性に焦点をあてる。
バックボーンを小さくしたメソッドの大規模な実験と,MetaGraspNetデータセットを新しいテストグラウンドとして実施する。
また,MTLにおける課題の新規かつ効率的な識別子として,特徴分散尺度を提案する。
論文 参考訳(メタデータ) (2024-02-05T22:15:55Z) - Robust Multi-Task Learning with Excess Risks [24.695243608197835]
マルチタスク学習(MTL)は、全てのタスク損失の凸結合を最適化することにより、複数のタスクのジョイントモデルを学ぶことを検討する。
既存の方法は適応的な重み更新方式を用いており、各損失に基づいてタスク重みを動的に調整し、困難なタスクを優先順位付けする。
本稿では,過度リスクに基づくタスクバランス手法であるMulti-Task Learning with Excess Risks (ExcessMTL)を提案する。
論文 参考訳(メタデータ) (2024-02-03T03:46:14Z) - On Task Performance and Model Calibration with Supervised and
Self-Ensembled In-Context Learning [71.44986275228747]
In-context Learning (ICL) は、近年の大規模言語モデル(LLM)の進歩により、効率的なアプローチとなっている。
しかし、両方のパラダイムは、過信の批判的な問題(すなわち、誤校正)に苦しむ傾向にある。
論文 参考訳(メタデータ) (2023-12-21T11:55:10Z) - A Multi-Head Ensemble Multi-Task Learning Approach for Dynamical
Computation Offloading [62.34538208323411]
共有バックボーンと複数の予測ヘッド(PH)を組み合わせたマルチヘッドマルチタスク学習(MEMTL)手法を提案する。
MEMTLは、追加のトレーニングデータを必要とせず、推測精度と平均平方誤差の両方でベンチマーク手法より優れている。
論文 参考訳(メタデータ) (2023-09-02T11:01:16Z) - Improving Multi-task Learning via Seeking Task-based Flat Regions [38.28600737969538]
MTL(Multi-Task Learning)は、ディープニューラルネットワークをトレーニングするための強力な学習パラダイムである。
MTLには、究極の勾配降下方向を導出するためにタスク勾配を操作することに焦点を当てた、新たな作業ラインがある。
単タスク学習におけるモデル一般化能力を向上するシャープネス認識最小化という,最近導入されたトレーニング手法を活用することを提案する。
論文 参考訳(メタデータ) (2022-11-24T17:19:30Z) - SLAW: Scaled Loss Approximate Weighting for Efficient Multi-Task
Learning [0.0]
マルチタスク学習(MTL)は、機械学習のサブフィールドであり、重要な応用がある。
最適MTL最適化法は、各タスクの損失関数の勾配を個別に計算する必要がある。
マルチタスク最適化手法であるScaled Loss Approximate Weighting (SLAW)を提案する。
論文 参考訳(メタデータ) (2021-09-16T20:58:40Z) - Efficient Model-Based Multi-Agent Mean-Field Reinforcement Learning [89.31889875864599]
マルチエージェントシステムにおける学習に有効なモデルベース強化学習アルゴリズムを提案する。
我々の理論的な貢献は、MFCのモデルベース強化学習における最初の一般的な後悔の限界である。
コア最適化問題の実用的なパラメトリゼーションを提供する。
論文 参考訳(メタデータ) (2021-07-08T18:01:02Z) - Softmax with Regularization: Better Value Estimation in Multi-Agent
Reinforcement Learning [72.28520951105207]
q$-learningの過大評価は、シングルエージェント強化学習で広く研究されている重要な問題である。
ベースラインから逸脱する大きな関節動作値をペナライズする,新たな正規化ベースの更新方式を提案する。
本手法は,StarCraft IIマイクロマネジメントの課題に対して,一貫した性能向上を実現する。
論文 参考訳(メタデータ) (2021-03-22T14:18:39Z) - Multi-Loss Weighting with Coefficient of Variations [19.37721431024278]
本稿では,変動係数に基づく重み付け手法を提案し,モデルのトレーニング中に観測された特性に基づいて重みを設定する。
提案手法は損失のバランスをとるための不確実性の尺度を組み込んでおり、その結果、他の(学習ベース)最適化を必要とせずに、トレーニング中に損失重みが進化する。
提案手法の有効性は,複数のデータセット上での深度推定とセマンティックセグメンテーションに実証的に示される。
論文 参考訳(メタデータ) (2020-09-03T14:51:19Z) - Task-Feature Collaborative Learning with Application to Personalized
Attribute Prediction [166.87111665908333]
本稿では,TFCL(Task-Feature Collaborative Learning)と呼ばれる新しいマルチタスク学習手法を提案する。
具体的には、まず、特徴とタスクの協調的なグループ化を活用するために、不均一なブロック対角構造正規化器を用いたベースモデルを提案する。
実際の拡張として,重なり合う機能と難易度を区別することで,基本モデルを拡張します。
論文 参考訳(メタデータ) (2020-04-29T02:32:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。