Learning General Parameterized Policies for Infinite Horizon Average Reward Constrained MDPs via Primal-Dual Policy Gradient Algorithm
- URL: http://arxiv.org/abs/2402.02042v3
- Date: Wed, 30 Oct 2024 05:42:06 GMT
- Title: Learning General Parameterized Policies for Infinite Horizon Average Reward Constrained MDPs via Primal-Dual Policy Gradient Algorithm
- Authors: Qinbo Bai, Washim Uddin Mondal, Vaneet Aggarwal,
- Abstract summary: We propose a primal dual-based policy gradient algorithm that adeptly manages the constraints while ensuring a low regret guarantee toward achieving a global optimal policy.
Our proposed algorithm achieves $tildemathcalO(T4/5)$ objective regret and $tildemathcalO(T4/5)$ constraint violation bounds.
- Score: 34.593772931446125
- License:
- Abstract: This paper explores the realm of infinite horizon average reward Constrained Markov Decision Processes (CMDPs). To the best of our knowledge, this work is the first to delve into the regret and constraint violation analysis of average reward CMDPs with a general policy parametrization. To address this challenge, we propose a primal dual-based policy gradient algorithm that adeptly manages the constraints while ensuring a low regret guarantee toward achieving a global optimal policy. In particular, our proposed algorithm achieves $\tilde{\mathcal{O}}({T}^{4/5})$ objective regret and $\tilde{\mathcal{O}}({T}^{4/5})$ constraint violation bounds.
Related papers
- Near-Optimal Policy Identification in Robust Constrained Markov Decision Processes via Epigraph Form [26.01796404477275]
This paper presents the first algorithm capable of identifying a near-optimal policy in a robust constrained MDP (RCMDP)
An optimal policy minimizes cumulative cost while satisfying constraints in the worst-case scenario across a set of environments.
arXiv Detail & Related papers (2024-08-29T06:37:16Z) - Last-Iterate Global Convergence of Policy Gradients for Constrained Reinforcement Learning [62.81324245896717]
We introduce an exploration-agnostic algorithm, called C-PG, which exhibits global last-ite convergence guarantees under (weak) gradient domination assumptions.
We numerically validate our algorithms on constrained control problems, and compare them with state-of-the-art baselines.
arXiv Detail & Related papers (2024-07-15T14:54:57Z) - On the Global Convergence of Policy Gradient in Average Reward Markov
Decision Processes [50.68789924454235]
We present the first finite time global convergence analysis of policy gradient in the context of average reward Markov decision processes (MDPs)
Our analysis shows that the policy gradient iterates converge to the optimal policy at a sublinear rate of $Oleft(frac1Tright),$ which translates to $Oleft(log(T)right)$ regret, where $T$ represents the number of iterations.
arXiv Detail & Related papers (2024-03-11T15:25:03Z) - Truly No-Regret Learning in Constrained MDPs [61.78619476991494]
We propose a model-based primal-dual algorithm to learn in an unknown CMDP.
We prove that our algorithm achieves sublinear regret without error cancellations.
arXiv Detail & Related papers (2024-02-24T09:47:46Z) - A safe exploration approach to constrained Markov decision processes [7.036452261968767]
We consider discounted infinite horizon constrained Markov decision processes (CMDPs)
The goal is to find an optimal policy that maximizes the expected cumulative reward subject to expected cumulative constraints.
Motivated by the application of CMDPs in online learning of safety-critical systems, we focus on developing a model-free and simulator-free algorithm.
arXiv Detail & Related papers (2023-12-01T13:16:39Z) - Model-Free, Regret-Optimal Best Policy Identification in Online CMDPs [17.62509045102346]
This paper considers the best policy identification problem in online Constrained Markov Decision Processes (CMDPs)
We are interested in algorithms that are model-free, have low regret, and identify an approximately optimal policy with a high probability.
Existing model-free algorithms for online CMDPs with sublinear regret and constraint violation do not provide any convergence guarantee to an optimal policy.
arXiv Detail & Related papers (2023-09-27T04:33:09Z) - Regret Analysis of Policy Gradient Algorithm for Infinite Horizon
Average Reward Markov Decision Processes [38.879933964474326]
We consider an infinite horizon average reward Markov Decision Process (MDP)
We propose a policy gradient-based algorithm and show its global convergence property.
We prove that the proposed algorithm has $tildemathcalO(T3/4)$ regret.
arXiv Detail & Related papers (2023-09-05T03:22:46Z) - Last-Iterate Convergent Policy Gradient Primal-Dual Methods for
Constrained MDPs [107.28031292946774]
We study the problem of computing an optimal policy of an infinite-horizon discounted Markov decision process (constrained MDP)
We develop two single-time-scale policy-based primal-dual algorithms with non-asymptotic convergence of their policy iterates to an optimal constrained policy.
To the best of our knowledge, this work appears to be the first non-asymptotic policy last-iterate convergence result for single-time-scale algorithms in constrained MDPs.
arXiv Detail & Related papers (2023-06-20T17:27:31Z) - Achieving Zero Constraint Violation for Constrained Reinforcement Learning via Conservative Natural Policy Gradient Primal-Dual Algorithm [42.83837408373223]
We consider the problem of constrained Markov decision process (CMDP) in continuous state-actions spaces.
We propose a novel Conservative Natural Policy Gradient Primal-Dual Algorithm (C-NPG-PD) to achieve zero constraint violation.
arXiv Detail & Related papers (2022-06-12T22:31:43Z) - Softmax Policy Gradient Methods Can Take Exponential Time to Converge [60.98700344526674]
The softmax policy gradient (PG) method is arguably one of the de facto implementations of policy optimization in modern reinforcement learning.
We demonstrate that softmax PG methods can take exponential time -- in terms of $mathcalS|$ and $frac11-gamma$ -- to converge.
arXiv Detail & Related papers (2021-02-22T18:56:26Z) - Provably Efficient Safe Exploration via Primal-Dual Policy Optimization [105.7510838453122]
We study the Safe Reinforcement Learning (SRL) problem using the Constrained Markov Decision Process (CMDP) formulation.
We present an provably efficient online policy optimization algorithm for CMDP with safe exploration in the function approximation setting.
arXiv Detail & Related papers (2020-03-01T17:47:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.