Near-Optimal Policy Identification in Robust Constrained Markov Decision Processes via Epigraph Form
- URL: http://arxiv.org/abs/2408.16286v2
- Date: Mon, 2 Sep 2024 10:56:20 GMT
- Title: Near-Optimal Policy Identification in Robust Constrained Markov Decision Processes via Epigraph Form
- Authors: Toshinori Kitamura, Tadashi Kozuno, Wataru Kumagai, Kenta Hoshino, Yohei Hosoe, Kazumi Kasaura, Masashi Hamaya, Paavo Parmas, Yutaka Matsuo,
- Abstract summary: This paper presents the first algorithm capable of identifying a near-optimal policy in a robust constrained MDP (RCMDP)
An optimal policy minimizes cumulative cost while satisfying constraints in the worst-case scenario across a set of environments.
- Score: 26.01796404477275
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Designing a safe policy for uncertain environments is crucial in real-world control applications. However, this challenge remains inadequately addressed within the Markov decision process (MDP) framework. This paper presents the first algorithm capable of identifying a near-optimal policy in a robust constrained MDP (RCMDP), where an optimal policy minimizes cumulative cost while satisfying constraints in the worst-case scenario across a set of environments. We first prove that the conventional Lagrangian max-min formulation with policy gradient methods can become trapped in suboptimal solutions by encountering a sum of conflicting gradients from the objective and constraint functions during its inner minimization problem. To address this, we leverage the epigraph form of the RCMDP problem, which resolves the conflict by selecting a single gradient from either the objective or the constraints. Building on the epigraph form, we propose a binary search algorithm with a policy gradient subroutine and prove that it identifies an $\varepsilon$-optimal policy in an RCMDP with $\tilde{\mathcal{O}}(\varepsilon^{-4})$ policy evaluations.
Related papers
- Landscape of Policy Optimization for Finite Horizon MDPs with General State and Action [10.219627570276689]
We develop a framework for a class of Markov Decision Processes with general state and spaces.
We show that gradient methods converge to the globally optimal policy with a nonasymptomatic condition.
Our result establishes first complexity for multi-period inventory systems.
arXiv Detail & Related papers (2024-09-25T17:56:02Z) - Deterministic Policy Gradient Primal-Dual Methods for Continuous-Space Constrained MDPs [82.34567890576423]
We develop a deterministic policy gradient primal-dual method to find an optimal deterministic policy with non-asymptotic convergence.
We prove that the primal-dual iterates of D-PGPD converge at a sub-linear rate to an optimal regularized primal-dual pair.
To the best of our knowledge, this appears to be the first work that proposes a deterministic policy search method for continuous-space constrained MDPs.
arXiv Detail & Related papers (2024-08-19T14:11:04Z) - A safe exploration approach to constrained Markov decision processes [7.036452261968767]
We consider discounted infinite horizon constrained Markov decision processes (CMDPs)
The goal is to find an optimal policy that maximizes the expected cumulative reward subject to expected cumulative constraints.
Motivated by the application of CMDPs in online learning of safety-critical systems, we focus on developing a model-free and simulator-free algorithm.
arXiv Detail & Related papers (2023-12-01T13:16:39Z) - Last-Iterate Convergent Policy Gradient Primal-Dual Methods for
Constrained MDPs [107.28031292946774]
We study the problem of computing an optimal policy of an infinite-horizon discounted Markov decision process (constrained MDP)
We develop two single-time-scale policy-based primal-dual algorithms with non-asymptotic convergence of their policy iterates to an optimal constrained policy.
To the best of our knowledge, this work appears to be the first non-asymptotic policy last-iterate convergence result for single-time-scale algorithms in constrained MDPs.
arXiv Detail & Related papers (2023-06-20T17:27:31Z) - Policy Gradient Algorithms for Robust MDPs with Non-Rectangular
Uncertainty Sets [10.26382228865201]
We propose policy gradient algorithms for robust infinite-horizon Markov decision processes (MDPs) with non-rectangular uncertainty sets.
The corresponding robust MDPs cannot be solved with dynamic programming techniques and are in fact provably intractable.
We thus present the first complete solution scheme for robust MDPs with non-rectangular uncertainty sets offering global optimality guarantees.
arXiv Detail & Related papers (2023-05-30T13:02:25Z) - High-probability sample complexities for policy evaluation with linear function approximation [88.87036653258977]
We investigate the sample complexities required to guarantee a predefined estimation error of the best linear coefficients for two widely-used policy evaluation algorithms.
We establish the first sample complexity bound with high-probability convergence guarantee that attains the optimal dependence on the tolerance level.
arXiv Detail & Related papers (2023-05-30T12:58:39Z) - Policy Gradient for Rectangular Robust Markov Decision Processes [62.397882389472564]
We introduce robust policy gradient (RPG), a policy-based method that efficiently solves rectangular robust Markov decision processes (MDPs)
Our resulting RPG can be estimated from data with the same time complexity as its non-robust equivalent.
arXiv Detail & Related papers (2023-01-31T12:40:50Z) - Policy Gradient in Robust MDPs with Global Convergence Guarantee [13.40471012593073]
Robust Markov decision processes (RMDPs) provide a promising framework for computing reliable policies in the face of model errors.
This paper proposes a new Double-Loop Robust Policy Gradient (DRPG), the first generic policy gradient method for RMDPs.
In contrast with prior robust policy gradient algorithms, DRPG monotonically reduces approximation errors to guarantee convergence to a globally optimal policy.
arXiv Detail & Related papers (2022-12-20T17:14:14Z) - First-order Policy Optimization for Robust Markov Decision Process [40.2022466644885]
We consider the problem of solving robust Markov decision process (MDP)
MDP involves a set of discounted, finite state, finite action space MDPs with uncertain transition kernels.
For $(mathbfs,mathbfa)$-rectangular uncertainty sets, we establish several structural observations on the robust objective.
arXiv Detail & Related papers (2022-09-21T18:10:28Z) - Multi-Objective Policy Gradients with Topological Constraints [108.10241442630289]
We present a new algorithm for a policy gradient in TMDPs by a simple extension of the proximal policy optimization (PPO) algorithm.
We demonstrate this on a real-world multiple-objective navigation problem with an arbitrary ordering of objectives both in simulation and on a real robot.
arXiv Detail & Related papers (2022-09-15T07:22:58Z) - Softmax Policy Gradient Methods Can Take Exponential Time to Converge [60.98700344526674]
The softmax policy gradient (PG) method is arguably one of the de facto implementations of policy optimization in modern reinforcement learning.
We demonstrate that softmax PG methods can take exponential time -- in terms of $mathcalS|$ and $frac11-gamma$ -- to converge.
arXiv Detail & Related papers (2021-02-22T18:56:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.