Risk-Sensitive Diffusion: Robustly Optimizing Diffusion Models with Noisy Samples
- URL: http://arxiv.org/abs/2402.02081v3
- Date: Wed, 02 Oct 2024 18:11:31 GMT
- Title: Risk-Sensitive Diffusion: Robustly Optimizing Diffusion Models with Noisy Samples
- Authors: Yangming Li, Max Ruiz Luyten, Mihaela van der Schaar,
- Abstract summary: Non-image data are prevalent in real applications and tend to be noisy.
Risk-sensitive SDE is a type of differential equation (SDE) parameterized by the risk vector.
We conduct systematic studies for both Gaussian and non-Gaussian noise distributions.
- Score: 58.68233326265417
- License:
- Abstract: Diffusion models are mainly studied on image data. However, non-image data (e.g., tabular data) are also prevalent in real applications and tend to be noisy due to some inevitable factors in the stage of data collection, degrading the generation quality of diffusion models. In this paper, we consider a novel problem setting where every collected sample is paired with a vector indicating the data quality: risk vector. This setting applies to many scenarios involving noisy data and we propose risk-sensitive SDE, a type of stochastic differential equation (SDE) parameterized by the risk vector, to address it. With some proper coefficients, risk-sensitive SDE can minimize the negative effect of noisy samples on the optimization of diffusion models. We conduct systematic studies for both Gaussian and non-Gaussian noise distributions, providing analytical forms of risk-sensitive SDE. To verify the effectiveness of our method, we have conducted extensive experiments on multiple tabular and time-series datasets, showing that risk-sensitive SDE permits a robust optimization of diffusion models with noisy samples and significantly outperforms previous baselines.
Related papers
- Identifying Drift, Diffusion, and Causal Structure from Temporal Snapshots [10.018568337210876]
We present the first comprehensive approach for jointly estimating the drift and diffusion of an SDE from its temporal marginals.
We show that each of these steps areAlterally optimal with respect to the Kullback-Leibler datasets.
arXiv Detail & Related papers (2024-10-30T06:28:21Z) - Gaussian Mixture Solvers for Diffusion Models [84.83349474361204]
We introduce a novel class of SDE-based solvers called GMS for diffusion models.
Our solver outperforms numerous SDE-based solvers in terms of sample quality in image generation and stroke-based synthesis.
arXiv Detail & Related papers (2023-11-02T02:05:38Z) - Semi-Implicit Denoising Diffusion Models (SIDDMs) [50.30163684539586]
Existing models such as Denoising Diffusion Probabilistic Models (DDPM) deliver high-quality, diverse samples but are slowed by an inherently high number of iterative steps.
We introduce a novel approach that tackles the problem by matching implicit and explicit factors.
We demonstrate that our proposed method obtains comparable generative performance to diffusion-based models and vastly superior results to models with a small number of sampling steps.
arXiv Detail & Related papers (2023-06-21T18:49:22Z) - Exploring the Optimal Choice for Generative Processes in Diffusion
Models: Ordinary vs Stochastic Differential Equations [6.2284442126065525]
We study the problem mathematically for two limiting scenarios: the zero diffusion (ODE) case and the large diffusion case.
Our findings indicate that when the perturbation occurs at the end of the generative process, the ODE model outperforms the SDE model with a large diffusion coefficient.
arXiv Detail & Related papers (2023-06-03T09:27:15Z) - A Geometric Perspective on Diffusion Models [57.27857591493788]
We inspect the ODE-based sampling of a popular variance-exploding SDE.
We establish a theoretical relationship between the optimal ODE-based sampling and the classic mean-shift (mode-seeking) algorithm.
arXiv Detail & Related papers (2023-05-31T15:33:16Z) - Solving Diffusion ODEs with Optimal Boundary Conditions for Better Image Super-Resolution [82.50210340928173]
randomness of diffusion models results in ineffectiveness and instability, making it challenging for users to guarantee the quality of SR results.
We propose a plug-and-play sampling method that owns the potential to benefit a series of diffusion-based SR methods.
The quality of SR results sampled by the proposed method with fewer steps outperforms the quality of results sampled by current methods with randomness from the same pre-trained diffusion-based SR model.
arXiv Detail & Related papers (2023-05-24T17:09:54Z) - Diffusion Normalizing Flow [4.94950858749529]
We present a novel generative modeling method called diffusion normalizing flow based on differential equations (SDEs)
The algorithm consists of two neural SDEs: a forward SDE that gradually adds noise to the data to transform the data into Gaussian random noise, and a backward SDE that gradually removes the noise to sample from the data distribution.
Our algorithm demonstrates competitive performance in both high-dimension data density estimation and image generation tasks.
arXiv Detail & Related papers (2021-10-14T17:41:12Z) - Score-Based Generative Modeling through Stochastic Differential
Equations [114.39209003111723]
We present a differential equation that transforms a complex data distribution to a known prior distribution by injecting noise.
A corresponding reverse-time SDE transforms the prior distribution back into the data distribution by slowly removing the noise.
By leveraging advances in score-based generative modeling, we can accurately estimate these scores with neural networks.
We demonstrate high fidelity generation of 1024 x 1024 images for the first time from a score-based generative model.
arXiv Detail & Related papers (2020-11-26T19:39:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.