Identifying Drift, Diffusion, and Causal Structure from Temporal Snapshots
- URL: http://arxiv.org/abs/2410.22729v1
- Date: Wed, 30 Oct 2024 06:28:21 GMT
- Title: Identifying Drift, Diffusion, and Causal Structure from Temporal Snapshots
- Authors: Vincent Guan, Joseph Janssen, Hossein Rahmani, Andrew Warren, Stephen Zhang, Elina Robeva, Geoffrey Schiebinger,
- Abstract summary: We present the first comprehensive approach for jointly estimating the drift and diffusion of an SDE from its temporal marginals.
We show that each of these steps areAlterally optimal with respect to the Kullback-Leibler datasets.
- Score: 10.018568337210876
- License:
- Abstract: Stochastic differential equations (SDEs) are a fundamental tool for modelling dynamic processes, including gene regulatory networks (GRNs), contaminant transport, financial markets, and image generation. However, learning the underlying SDE from observational data is a challenging task, especially when individual trajectories are not observable. Motivated by burgeoning research in single-cell datasets, we present the first comprehensive approach for jointly estimating the drift and diffusion of an SDE from its temporal marginals. Assuming linear drift and additive diffusion, we prove that these parameters are identifiable from marginals if and only if the initial distribution is not invariant to a class of generalized rotations, a condition that is satisfied by most distributions. We further prove that the causal graph of any SDE with additive diffusion can be recovered from the SDE parameters. To complement this theory, we adapt entropy-regularized optimal transport to handle anisotropic diffusion, and introduce APPEX (Alternating Projection Parameter Estimation from $X_0$), an iterative algorithm designed to estimate the drift, diffusion, and causal graph of an additive noise SDE, solely from temporal marginals. We show that each of these steps are asymptotically optimal with respect to the Kullback-Leibler divergence, and demonstrate APPEX's effectiveness on simulated data from linear additive noise SDEs.
Related papers
- Diffusion-PINN Sampler [6.656265182236135]
We introduce a novel diffusion-based sampling algorithm that estimates the drift term by solving the governing partial differential equation of the log-density of the underlying SDE marginals via physics-informed neural networks (PINN)
We prove that the error of log-density approximation can be controlled by the PINN residual loss, enabling us to establish convergence guarantees of DPS.
arXiv Detail & Related papers (2024-10-20T09:02:16Z) - AdjointDEIS: Efficient Gradients for Diffusion Models [2.0795007613453445]
We show that continuous adjoint equations for diffusion SDEs actually simplify to a simple ODE.
We also demonstrate the effectiveness of AdjointDEIS for guided generation with an adversarial attack in the form of the face morphing problem.
arXiv Detail & Related papers (2024-05-23T19:51:33Z) - Risk-Sensitive Diffusion: Robustly Optimizing Diffusion Models with Noisy Samples [58.68233326265417]
Non-image data are prevalent in real applications and tend to be noisy.
Risk-sensitive SDE is a type of differential equation (SDE) parameterized by the risk vector.
We conduct systematic studies for both Gaussian and non-Gaussian noise distributions.
arXiv Detail & Related papers (2024-02-03T08:41:51Z) - Gaussian Mixture Solvers for Diffusion Models [84.83349474361204]
We introduce a novel class of SDE-based solvers called GMS for diffusion models.
Our solver outperforms numerous SDE-based solvers in terms of sample quality in image generation and stroke-based synthesis.
arXiv Detail & Related papers (2023-11-02T02:05:38Z) - Latent SDEs on Homogeneous Spaces [9.361372513858043]
We consider the problem of variational Bayesian inference in a latent variable model where a (possibly complex) observed geometric process is governed by the solution of a latent differential equation (SDE)
Experiments demonstrate that a latent SDE of the proposed type can be learned efficiently by means of an existing one-step Euler-Maruyama scheme.
arXiv Detail & Related papers (2023-06-28T14:18:52Z) - Exploring the Optimal Choice for Generative Processes in Diffusion
Models: Ordinary vs Stochastic Differential Equations [6.2284442126065525]
We study the problem mathematically for two limiting scenarios: the zero diffusion (ODE) case and the large diffusion case.
Our findings indicate that when the perturbation occurs at the end of the generative process, the ODE model outperforms the SDE model with a large diffusion coefficient.
arXiv Detail & Related papers (2023-06-03T09:27:15Z) - A Geometric Perspective on Diffusion Models [57.27857591493788]
We inspect the ODE-based sampling of a popular variance-exploding SDE.
We establish a theoretical relationship between the optimal ODE-based sampling and the classic mean-shift (mode-seeking) algorithm.
arXiv Detail & Related papers (2023-05-31T15:33:16Z) - Score-based Generative Modeling of Graphs via the System of Stochastic
Differential Equations [57.15855198512551]
We propose a novel score-based generative model for graphs with a continuous-time framework.
We show that our method is able to generate molecules that lie close to the training distribution yet do not violate the chemical valency rule.
arXiv Detail & Related papers (2022-02-05T08:21:04Z) - BCD Nets: Scalable Variational Approaches for Bayesian Causal Discovery [97.79015388276483]
A structural equation model (SEM) is an effective framework to reason over causal relationships represented via a directed acyclic graph (DAG)
Recent advances enabled effective maximum-likelihood point estimation of DAGs from observational data.
We propose BCD Nets, a variational framework for estimating a distribution over DAGs characterizing a linear-Gaussian SEM.
arXiv Detail & Related papers (2021-12-06T03:35:21Z) - Stochastic Normalizing Flows [52.92110730286403]
We introduce normalizing flows for maximum likelihood estimation and variational inference (VI) using differential equations (SDEs)
Using the theory of rough paths, the underlying Brownian motion is treated as a latent variable and approximated, enabling efficient training of neural SDEs.
These SDEs can be used for constructing efficient chains to sample from the underlying distribution of a given dataset.
arXiv Detail & Related papers (2020-02-21T20:47:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.