論文の概要: Déjà Vu Memorization in Vision-Language Models
- arxiv url: http://arxiv.org/abs/2402.02103v2
- Date: Mon, 28 Oct 2024 19:12:53 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-30 13:37:42.789715
- Title: Déjà Vu Memorization in Vision-Language Models
- Title(参考訳): 視覚言語モデルにおけるDéjà Vu記憶
- Authors: Bargav Jayaraman, Chuan Guo, Kamalika Chaudhuri,
- Abstract要約: 視覚言語モデル(VLM)における記憶量測定のための新しい手法を提案する。
モデルでは、相関や画像キャプションから推測できる範囲を超えて、トレーニング画像中の個々のオブジェクトに関する情報が実際に保持されていることを示す。
サンプルおよび集団レベルでのd'eja vuメモリ化を評価し,最大5000万枚の画像キャプチャーペアで訓練したOpenCLIPにとって重要であることを示す。
- 参考スコア(独自算出の注目度): 39.51189095703773
- License:
- Abstract: Vision-Language Models (VLMs) have emerged as the state-of-the-art representation learning solution, with myriads of downstream applications such as image classification, retrieval and generation. A natural question is whether these models memorize their training data, which also has implications for generalization. We propose a new method for measuring memorization in VLMs, which we call d\'ej\`a vu memorization. For VLMs trained on image-caption pairs, we show that the model indeed retains information about individual objects in the training images beyond what can be inferred from correlations or the image caption. We evaluate d\'ej\`a vu memorization at both sample and population level, and show that it is significant for OpenCLIP trained on as many as 50M image-caption pairs. Finally, we show that text randomization considerably mitigates memorization while only moderately impacting the model's downstream task performance.
- Abstract(参考訳): VLM(Vision-Language Models)が最先端の表現学習ソリューションとして登場し、画像分類、検索、生成といった下流の応用が多数存在する。
自然な疑問は、これらのモデルがトレーニングデータを記憶しているかどうかである。
本稿では,VLMの記憶量を測定する新しい手法を提案し,これをd\'ej\`a vu記憶量と呼ぶ。
画像キャプチャペアで訓練されたVLMに対して、このモデルは、相関や画像キャプションから推測できる範囲を超えて、トレーニング画像中の個々のオブジェクトに関する情報を実際に保持していることを示す。
サンプルおよび個体群レベルでのd\'ej\``a vuメモリ化を評価し,最大5000万枚の画像キャプチャーペアで訓練したOpenCLIPにとって重要であることを示す。
最後に, テキストのランダム化は, ダウンストリームタスクの性能にわずかに影響を与えながら, メモリ化を著しく軽減することを示す。
関連論文リスト
- Enhancing Large Vision Language Models with Self-Training on Image Comprehension [99.9389737339175]
本稿では、画像理解に特化して自己学習アプローチを強調する自己学習 on Image (STIC)を紹介する。
まず、ラベルのない画像を用いて、画像記述の好みを自己構築する。
抽出した視覚情報に対する推論をさらに自己改善するため,既存の命令調整データのごく一部をモデルに再利用する。
論文 参考訳(メタデータ) (2024-05-30T05:53:49Z) - Generative Cross-Modal Retrieval: Memorizing Images in Multimodal
Language Models for Retrieval and Beyond [99.73306923465424]
画像表現にユニークな識別子文字列を割り当てる生成的クロスモーダル検索フレームワークを提案する。
MLLMのイメージを記憶することで,従来の差別的アプローチとは異なる,クロスモーダル検索の新しいパラダイムを導入する。
論文 参考訳(メタデータ) (2024-02-16T16:31:46Z) - Visual Data-Type Understanding does not emerge from Scaling
Vision-Language Models [31.69213233651326]
視覚データ型識別の新しい課題について紹介する。
39の視覚言語モデル(VLM)の広範囲なゼロショット評価は、微妙なパフォーマンスランドスケープを示している。
論文 参考訳(メタデータ) (2023-10-12T17:59:30Z) - Improving Image Recognition by Retrieving from Web-Scale Image-Text Data [68.63453336523318]
本稿では,メモリから抽出した各サンプルの重要性を学習するアテンションベースのメモリモジュールを提案する。
既存の手法と比較して,提案手法は無関係な検索例の影響を排除し,入力クエリに有益であるものを保持する。
我々は、ImageNet-LT、Places-LT、Webvisionのデータセットで最先端の精度を実現していることを示す。
論文 参考訳(メタデータ) (2023-04-11T12:12:05Z) - Generative Negative Text Replay for Continual Vision-Language
Pretraining [95.2784858069843]
視覚言語による事前学習が近年注目を集めている。
大量のデータは、通常ストリーミング形式で収集される。
本稿では,画像とテキスト間のマルチモーダルな知識蒸留手法を提案する。
論文 参考訳(メタデータ) (2022-10-31T13:42:21Z) - Prompt-based Learning for Unpaired Image Captioning [86.44188293709307]
Unpaired Image Captioning (UIC) は、非整合視覚言語サンプルペアから画像記述を学習するために開発された。
近年のVision-Language Pre-Trained Models (VL-PTMs) の成功は、プロンプトベース学習の発展を引き起こしている。
本稿では,UICモデルをトレーニングするためのプロンプトに基づく新しいスキームを提案し,その強力な一般化能力を最大限に活用する。
論文 参考訳(メタデータ) (2022-05-26T03:13:43Z) - Learning Visual Representations with Caption Annotations [19.24013129952071]
本稿では,視覚的表現をイメージ・キャプション・ペア上で学習するプロキシ・タスクを提案する。
ICMLMは視覚的手がかりに頼って字幕中のマスキング語を予測する。
実験の結果,画像キャプションを利用してグローバルな意味情報を視覚表現に注入できることが確認された。
論文 参考訳(メタデータ) (2020-08-04T08:04:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。